On the Domains of Bessel Operators

被引:0
|
作者
Jan Dereziński
Vladimir Georgescu
机构
[1] University of Warsaw,Department of Mathematical Methods in Physics, Faculty of Physics
[2] UMR 8088 CNRS,Laboratoire AGM
来源
Annales Henri Poincaré | 2021年 / 22卷
关键词
47E99; 81Q80;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Schrödinger operator on the halfline with the potential (m2-14)1x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m^2-\frac{1}{4})\frac{1}{x^2}$$\end{document}, often called the Bessel operator. We assume that m is complex. We study the domains of various closed homogeneous realizations of the Bessel operator. In particular, we prove that the domain of its minimal realization for |Re(m)|<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mathrm{Re}(m)|<1$$\end{document} and of its unique closed realization for Re(m)>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Re}(m)>1$$\end{document} coincide with the minimal second-order Sobolev space. On the other hand, if Re(m)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Re}(m)=1$$\end{document} the minimal second-order Sobolev space is a subspace of infinite codimension of the domain of the unique closed Bessel operator. The properties of Bessel operators are compared with the properties of the corresponding bilinear forms.
引用
收藏
页码:3291 / 3309
页数:18
相关论文
共 50 条
  • [41] Mellin convolution operators in Bessel potential spaces
    Didenko, Victor D.
    Duduchava, Roland
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 443 (02) : 707 - 731
  • [42] Sharp Multiplier Theorem for Multidimensional Bessel Operators
    Edyta Kania
    Marcin Preisner
    Journal of Fourier Analysis and Applications, 2019, 25 : 2419 - 2446
  • [43] Sobolev type spaces associated with Bessel operators
    Pathak, RS
    Pandey, PK
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 215 (01) : 95 - 111
  • [44] Oscillation and variation for semigroups associated with Bessel operators
    Wu, Huoxiong
    Yang, Dongyong
    Zhang, Jing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 443 (02) : 848 - 867
  • [45] Sharp Multiplier Theorem for Multidimensional Bessel Operators
    Kania, Edyta
    Preisner, Marcin
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (05) : 2419 - 2446
  • [46] Univalence of integral operators involving Bessel functions
    Baricz, Arpad
    Frasin, Basem A.
    APPLIED MATHEMATICS LETTERS, 2010, 23 (04) : 371 - 376
  • [47] Hardy spaces for Bessel-Schrodinger operators
    Kania, Edyta
    Preisner, Marcin
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (5-6) : 908 - 927
  • [48] SOME REMARKS ON BOUNDARY OPERATORS OF BESSEL EXTENSIONS
    Goodman, Jesse
    Spector, Daniel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (03): : 493 - 509
  • [49] A Borg-Levinson theorem for Bessel operators
    Carlson, R
    PACIFIC JOURNAL OF MATHEMATICS, 1997, 177 (01) : 1 - 26
  • [50] Some Properties of Generalized Bessel Integral Operators
    Linchuk Y.S.
    Linchuk S.S.
    Journal of Mathematical Sciences, 2021, 253 (1) : 15 - 23