Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces

被引:0
|
作者
XingYa Fan
JianXun He
BaoDe Li
DaChun Yang
机构
[1] Guangzhou University,School of Mathematics and Information Sciences
[2] Xinjiang University,College of Mathematics and System Science
[3] Beijing Normal University,School of Mathematical Sciences
[4] Laboratory of Mathematics and Complex Systems,undefined
[5] Ministry of Education,undefined
来源
Science China Mathematics | 2017年 / 60卷
关键词
anisotropic expansive dilation; product Hardy space; product Musielak-Orlicz function; product Muckenhoupt weight; Littlewood-Paley theory; atom; anisotropic product singular integral operator; 42B35; 46E30; 42B30; 30L99;
D O I
暂无
中图分类号
学科分类号
摘要
Let A→:=(A1,A2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec A: = \left( {{A_1},{A_2}} \right)$$\end{document} be a pair of expansive dilations and φ: ℝn×ℝm×[0, ∞) → [0, ∞) an anisotropic product Musielak-Orlicz function. In this article, we introduce the anisotropic product Musielak-Orlicz Hardy space HA→φ(ℝn×ℝm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec A}^\varphi \left( {{\mathbb{R}^n} \times {\mathbb{R}^m}} \right)$$\end{document} via the anisotropic Lusin-area function and establish its atomic characterization, the g→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec g$$\end{document} -function characterization, the g→λ*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec g_\lambda ^*$$\end{document}-function characterization and the discrete wavelet characterization via first giving out an anisotropic product Peetre inequality of Musielak-Orlicz type. Moreover, we prove that finite atomic decomposition norm on a dense subspace of HA→φ(ℝn×ℝm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec A}^\varphi \left( {{\mathbb{R}^n} \times {\mathbb{R}^m}} \right)$$\end{document} is equivalent to the standard infinite atomic decomposition norm. As an application, we show that, for a given admissible triplet ((φ,q,s→)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\varphi ,q,\vec s} \right)$$\end{document}), if T is a sublinear operator and maps all ((φ,q,s→)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\varphi ,q,\vec s} \right)$$\end{document})-atoms into uniformly bounded elements of some quasi-Banach spaces B, then T uniquely extends to a bounded sublinear operator from HA→φ(ℝn×ℝm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec A}^\varphi \left( {{\mathbb{R}^n} \times {\mathbb{R}^m}} \right)$$\end{document} to B. Another application is that we obtain the boundedness of anisotropic product singular integral operators from HA→φ(ℝn×ℝm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec A}^\varphi \left( {{\mathbb{R}^n} \times {\mathbb{R}^m}} \right)$$\end{document} to Lφ(Rn × Rm) and from HA→φ(ℝn×ℝm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec A}^\varphi \left( {{\mathbb{R}^n} \times {\mathbb{R}^m}} \right)$$\end{document} to itself, whose kernels are adapted to the action of A→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec A$$\end{document}. The results of this article essentially extend the existing results for weighted product Hardy spaces on ℝn × ℝm and are new even for classical product Orlicz-Hardy spaces.
引用
收藏
页码:2093 / 2154
页数:61
相关论文
共 50 条
  • [41] Real-variable characterizations of local Orlicz-slice Hardy spaces with application to bilinear decompositions
    Zhang, Yangyang
    Yang, Dachun
    Yuan, Wen
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (06)
  • [42] Anisotropic Hardy Spaces of Musielak-Orlicz Type with Applications to Boundedness of Sublinear Operators
    Li, Baode
    Yang, Dachun
    Yuan, Wen
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [43] Local Hardy spaces of Musielak-Orlicz type and their applications
    Yang DaChun
    Yang SiBei
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (08) : 1677 - 1720
  • [44] Dual spaces for martingale Musielak-Orlicz Lorentz Hardy spaces
    Weisz, Ferenc
    Xie, Guangheng
    Yang, Dachun
    BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 179
  • [45] Local Hardy spaces of Musielak-Orlicz type and their applications
    YANG DaChun & YANG SiBei School of Mathematical Sciences
    ScienceChina(Mathematics), 2012, 55 (08) : 1676 - 1719
  • [46] Local Hardy spaces of Musielak-Orlicz type and their applications
    DaChun Yang
    SiBei Yang
    Science China Mathematics, 2012, 55 : 1677 - 1720
  • [47] Intrinsic Structures of Certain Musielak-Orlicz Hardy Spaces
    Cao, Jun
    Liu, Liguang
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (04) : 2961 - 2983
  • [48] Good Lambda Inequalities and Musielak-Orlicz Hardy Spaces
    Ferguson, Timothy
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2024, : 251 - 277
  • [49] REAL-VARIABLE CHARACTERIZATIONS OF HARDY SPACES ASSOCIATED WITH BESSEL OPERATORS
    Yang, Dachun
    Yang, Dongyong
    ANALYSIS AND APPLICATIONS, 2011, 9 (03) : 345 - 368
  • [50] LITTLEWOOD-PALEY gλ*-FUNCTION CHARACTERIZATIONS OF MUSIELAK-ORLICZ HARDY SPACES ON SPACES OF HOMOGENEOUS TYPE
    Yan, X.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2024, 13 (01): : 100 - 123