Good Lambda Inequalities and Musielak-Orlicz Hardy Spaces

被引:0
|
作者
Ferguson, Timothy [1 ]
机构
[1] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
关键词
D O I
10.1007/s40315-024-00541-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a general theorem showing that local good-lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} inequalities imply bounds in certain variable Orlicz spaces. We use this to prove results about variable Orlicz Hardy spaces (also called Musielak-Orlicz Hardy spaces) in the unit disc.
引用
收藏
页码:251 / 277
页数:27
相关论文
共 50 条
  • [1] Martingale inequalities on Musielak-Orlicz Hardy spaces
    He, Lechen
    Peng, Lihua
    Xie, Guangheng
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (11) : 5171 - 5189
  • [2] Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 1 - 57
  • [3] Local Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 255 - 327
  • [4] Hardy operators on Musielak-Orlicz spaces
    Karaman, Turhan
    FORUM MATHEMATICUM, 2018, 30 (05) : 1245 - 1254
  • [5] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    Science China Mathematics, 2019, 62 : 1567 - 1584
  • [6] SUMMABILITY IN MUSIELAK-ORLICZ HARDY SPACES
    Liu, Jun
    Xia, Haonan
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 1057 - 1072
  • [7] Weak Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 195 - 253
  • [8] Martingale Musielak-Orlicz Hardy spaces
    Xie, Guangheng
    Jiao, Yong
    Yang, Dachun
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (08) : 1567 - 1584
  • [9] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    Science China(Mathematics), 2019, 62 (08) : 1567 - 1584
  • [10] Sobolev inequalities for Musielak-Orlicz spaces
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    MANUSCRIPTA MATHEMATICA, 2018, 155 (1-2) : 209 - 227