Intrinsic Structures of Certain Musielak-Orlicz Hardy Spaces

被引:4
|
作者
Cao, Jun [1 ]
Liu, Liguang [2 ]
Yang, Dachun [3 ]
Yuan, Wen [3 ]
机构
[1] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Zhejiang, Peoples R China
[2] Renmin Univ China, Sch Informat, Dept Math, Beijing 100872, Peoples R China
[3] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy space; Musielak-Orlicz function; Muckenhoupt weight; Interpolation; Atom; Calderon-Zygmund decomposition;
D O I
10.1007/s12220-017-9943-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any p. (0, 1], let H Phi p (Rn) be the Musielak-Orlicz Hardy space associated with the Musielak-Orlicz growth function Phi p, defined by setting, for any x. Rn and t. [0, 8), Phi p(x, t) := {t/log (e + t) + [t(1 + vertical bar x vertical bar)n]1-p when n(1/p-1) is not an element of N boolean OR {0}, {t/log (e + t) + [t(1 + vertical bar x vertical bar)n]1-p when n(1/p-1) is an element of N boolean OR {0}, which is the sharp target space of the bilinear decomposition of the product of the Hardy space H p(Rn) and its dual. Moreover, H Phi 1 (Rn) is the prototype appearing in the real-variable theory of general Musielak-Orlicz Hardy spaces. In this article, the authors find a new structure of the space H Phi p (Rn) by showing that, for any p. (0, 1], H Phi p (Rn) = Hf0 (Rn) + H p Wp (Rn) and, for any p. (0, 1), H Phi p (Rn) = H1(Rn)+ H p Wp (Rn), where H1(Rn) denotes the classical real Hardy space, Hf0 (Rn) the Orlicz-Hardy space associated with the Orlicz function f0(t) := t/log(e + t) for any t. [0,8), and H p Wp (Rn) theweighted Hardy space associated with certain weight function Wp(x) that is comparable to Phi p(x, 1) for any x. Rn. As an application, the authors further establish an interpolation theorem of quasilinear operators based on this new structure.
引用
收藏
页码:2961 / 2983
页数:23
相关论文
共 50 条
  • [1] Intrinsic Structures of Certain Musielak–Orlicz Hardy Spaces
    Jun Cao
    Liguang Liu
    Dachun Yang
    Wen Yuan
    The Journal of Geometric Analysis, 2018, 28 : 2961 - 2983
  • [2] Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 1 - 57
  • [3] INTRINSIC SQUARE FUNCTION CHARACTERIZATIONS OF MUSIELAK-ORLICZ HARDY SPACES
    Liang, Yiyu
    Yang, Dachun
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (05) : 3225 - 3256
  • [4] Intrinsic Square Function Characterizations of Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 167 - 193
  • [5] Local Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 255 - 327
  • [6] Hardy operators on Musielak-Orlicz spaces
    Karaman, Turhan
    FORUM MATHEMATICUM, 2018, 30 (05) : 1245 - 1254
  • [7] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    Science China Mathematics, 2019, 62 : 1567 - 1584
  • [8] SUMMABILITY IN MUSIELAK-ORLICZ HARDY SPACES
    Liu, Jun
    Xia, Haonan
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 1057 - 1072
  • [9] Weak Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 195 - 253
  • [10] Martingale Musielak-Orlicz Hardy spaces
    Xie, Guangheng
    Jiao, Yong
    Yang, Dachun
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (08) : 1567 - 1584