Intrinsic Structures of Certain Musielak-Orlicz Hardy Spaces

被引:4
|
作者
Cao, Jun [1 ]
Liu, Liguang [2 ]
Yang, Dachun [3 ]
Yuan, Wen [3 ]
机构
[1] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Zhejiang, Peoples R China
[2] Renmin Univ China, Sch Informat, Dept Math, Beijing 100872, Peoples R China
[3] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy space; Musielak-Orlicz function; Muckenhoupt weight; Interpolation; Atom; Calderon-Zygmund decomposition;
D O I
10.1007/s12220-017-9943-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any p. (0, 1], let H Phi p (Rn) be the Musielak-Orlicz Hardy space associated with the Musielak-Orlicz growth function Phi p, defined by setting, for any x. Rn and t. [0, 8), Phi p(x, t) := {t/log (e + t) + [t(1 + vertical bar x vertical bar)n]1-p when n(1/p-1) is not an element of N boolean OR {0}, {t/log (e + t) + [t(1 + vertical bar x vertical bar)n]1-p when n(1/p-1) is an element of N boolean OR {0}, which is the sharp target space of the bilinear decomposition of the product of the Hardy space H p(Rn) and its dual. Moreover, H Phi 1 (Rn) is the prototype appearing in the real-variable theory of general Musielak-Orlicz Hardy spaces. In this article, the authors find a new structure of the space H Phi p (Rn) by showing that, for any p. (0, 1], H Phi p (Rn) = Hf0 (Rn) + H p Wp (Rn) and, for any p. (0, 1), H Phi p (Rn) = H1(Rn)+ H p Wp (Rn), where H1(Rn) denotes the classical real Hardy space, Hf0 (Rn) the Orlicz-Hardy space associated with the Orlicz function f0(t) := t/log(e + t) for any t. [0,8), and H p Wp (Rn) theweighted Hardy space associated with certain weight function Wp(x) that is comparable to Phi p(x, 1) for any x. Rn. As an application, the authors further establish an interpolation theorem of quasilinear operators based on this new structure.
引用
收藏
页码:2961 / 2983
页数:23
相关论文
共 50 条
  • [31] Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications
    Hui Zhang
    Chunyan Qi
    Baode Li
    Frontiers of Mathematics in China, 2017, 12 : 993 - 1022
  • [32] Atomic and Wavelet Characterization of Musielak-Orlicz Hardy Spaces for Generalized Orlicz Functions
    Izuki, Mitsuo
    Nakai, Eiichi
    Sawano, Yoshihiro
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2022, 94 (01)
  • [33] The Musielak-Orlicz Herz spaces
    Dong, Baohua
    Li, Yu
    Xu, Jingshi
    NEW YORK JOURNAL OF MATHEMATICS, 2023, 29 : 1287 - 1301
  • [34] ON COMPLETENESS OF MUSIELAK-ORLICZ SPACES
    WISLA, M
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1989, 10 (03) : 292 - 300
  • [35] Musielak-Orlicz Campanato Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 145 - 166
  • [36] New real-variable characterizations of Musielak-Orlicz Hardy spaces
    Liang, Yiyu
    Huang, Jizheng
    Yang, Dachun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (01) : 413 - 428
  • [37] Boundedness of Marcinkiewicz integrals with rough kernels on Musielak-Orlicz Hardy spaces
    Bo Li
    Minfeng Liao
    Baode Li
    Journal of Inequalities and Applications, 2017
  • [38] ATOMIC CHARACTERIZATIONS OF WEAK MARTINGALE MUSIELAK-ORLICZ HARDY SPACES AND THEIR APPLICATIONS
    Xie, Guangheng
    Yang, Dachun
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (04): : 884 - 917
  • [39] Boundedness of Marcinkiewicz integrals with rough kernels on Musielak-Orlicz Hardy spaces
    Li, Bo
    Liao, Minfeng
    Li, Baode
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [40] New Hardy Spaces of Musielak-Orlicz Type and Boundedness of Sublinear Operators
    Luong Dang Ky
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 78 (01) : 115 - 150