Gallai–Ramsey Numbers of Odd Cycles and Complete Bipartite Graphs

被引:0
|
作者
Ming Chen
Yusheng Li
Chaoping Pei
机构
[1] Tongji University,School of Mathematical Sciences
[2] Jiaxing University,College of Mathematics Physics and Information Engineering
来源
Graphs and Combinatorics | 2018年 / 34卷
关键词
Gallai–Ramsey number; Rainbow triangle; Cycle; Bipartite graph;
D O I
暂无
中图分类号
学科分类号
摘要
For graphs G and H and integer k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, the Gallai–Ramsey number grk(G:H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(G:H)$$\end{document} is defined to be the minimum integer N such that if KN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_N$$\end{document} is edge-colored with k colors, then there is either a rainbow G or a monochromatic H. It is known that grk(K3:C2n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(K_3:C_{2n+1})$$\end{document} is exponential in k. In this note, we improve the upper bound for grk(K3:C2n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(K_3:C_{2n+1})$$\end{document} obtained by Hall et al., and give bounds for grk(K3:Km,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(K_3:K_{m,n})$$\end{document}.
引用
收藏
页码:1185 / 1196
页数:11
相关论文
共 50 条
  • [41] Ramsey numbers and bipartite Ramsey numbers via quasi-random graphs
    Liu, Meng
    Li, Yusheng
    DISCRETE MATHEMATICS, 2021, 344 (01)
  • [42] Star-Critical Gallai-Ramsey Numbers of Graphs
    Su, Xueli
    Liu, Yan
    GRAPHS AND COMBINATORICS, 2022, 38 (05)
  • [43] Bipartite Ramsey numbers of paths for random graphs
    Liu, Meng
    Li, Yusheng
    DISCRETE APPLIED MATHEMATICS, 2019, 254 : 171 - 174
  • [44] Ramsey numbers for bipartite graphs with small bandwidth
    Mota, G. O.
    Sarkoezy, G. N.
    Schacht, M.
    Taraz, A.
    EUROPEAN JOURNAL OF COMBINATORICS, 2015, 48 : 165 - 176
  • [45] Ramsey Numbers Involving an Odd Cycle and Large Complete Graphs in Three Colors
    Liu, Meng
    Li, Yusheng
    GRAPHS AND COMBINATORICS, 2022, 38 (06)
  • [46] Ramsey Numbers Involving an Odd Cycle and Large Complete Graphs in Three Colors
    Meng Liu
    Yusheng Li
    Graphs and Combinatorics, 2022, 38
  • [47] Ramsey numbers of trees versus odd cycles
    Brennan, Matthew
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (03):
  • [48] RAMSEY NUMBERS FOR PATHS AND CYCLES IN GRAPHS
    FAUDREE, RJ
    SCHELP, RH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A44 - A45
  • [49] The Ramsey numbers of wheels versus odd cycles
    Zhang, Yanbo
    Zhang, Yunqing
    Chen, Yaojun
    DISCRETE MATHEMATICS, 2014, 323 : 76 - 80
  • [50] Ramsey numbers of cycles in random graphs
    Araujo, Pedro
    Pavez-Signe, Matias
    Sanhueza-Matamala, Nicolas
    RANDOM STRUCTURES & ALGORITHMS, 2024,