Gallai–Ramsey Numbers of Odd Cycles and Complete Bipartite Graphs

被引:0
|
作者
Ming Chen
Yusheng Li
Chaoping Pei
机构
[1] Tongji University,School of Mathematical Sciences
[2] Jiaxing University,College of Mathematics Physics and Information Engineering
来源
Graphs and Combinatorics | 2018年 / 34卷
关键词
Gallai–Ramsey number; Rainbow triangle; Cycle; Bipartite graph;
D O I
暂无
中图分类号
学科分类号
摘要
For graphs G and H and integer k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, the Gallai–Ramsey number grk(G:H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(G:H)$$\end{document} is defined to be the minimum integer N such that if KN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_N$$\end{document} is edge-colored with k colors, then there is either a rainbow G or a monochromatic H. It is known that grk(K3:C2n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(K_3:C_{2n+1})$$\end{document} is exponential in k. In this note, we improve the upper bound for grk(K3:C2n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(K_3:C_{2n+1})$$\end{document} obtained by Hall et al., and give bounds for grk(K3:Km,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(K_3:K_{m,n})$$\end{document}.
引用
收藏
页码:1185 / 1196
页数:11
相关论文
共 50 条
  • [21] Complete Bipartite Ramsey Numbers
    Hasmawati
    Assiyatun, H.
    Baskoro, E. T.
    Salman, A. N. M.
    UTILITAS MATHEMATICA, 2009, 78 : 129 - 138
  • [22] ROUTING NUMBERS OF CYCLES, COMPLETE BIPARTITE GRAPHS, AND HYPERCUBES
    Li, Wei-Tian
    Lu, Linyuan
    Yang, Yiting
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (04) : 1482 - 1494
  • [23] Ramsey and Gallai-Ramsey Numbers for Two Classes of Unicyclic Graphs
    Zhao Wang
    Yaping Mao
    Colton Magnant
    Jinyu Zou
    Graphs and Combinatorics, 2021, 37 : 337 - 354
  • [24] Online size Ramsey numbers: Odd cycles vs connected graphs
    Adamski, Grzegorz
    Bednarska-Bzdega, Malgorzata
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (03):
  • [25] Ramsey and Gallai-Ramsey Numbers for Two Classes of Unicyclic Graphs
    Wang, Zhao
    Mao, Yaping
    Magnant, Colton
    Zou, Jinyu
    GRAPHS AND COMBINATORICS, 2021, 37 (01) : 337 - 354
  • [26] On bipartite graphs with linear Ramsey numbers
    Graham, RL
    Rödl, V
    Rucinski, A
    COMBINATORICA, 2001, 21 (02) : 199 - 209
  • [27] Star-Critical Gallai–Ramsey Numbers of Graphs
    Xueli Su
    Yan Liu
    Graphs and Combinatorics, 2022, 38
  • [28] On Bipartite Graphs with Linear Ramsey Numbers
    R. L. Graham
    V. Rödl
    A. Ruciński
    Combinatorica, 2001, 21 : 199 - 209
  • [29] Multicolour Ramsey numbers of odd cycles
    Day, A. Nicholas
    Johnson, J. Robert
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 124 : 56 - 63
  • [30] Complete bipartite graphs deleted in Ramsey graphs
    Li, Yan
    Li, Yusheng
    Wang, Ye
    THEORETICAL COMPUTER SCIENCE, 2020, 840 : 212 - 218