For graphs G and H and integer k≥1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k\ge 1$$\end{document}, the Gallai–Ramsey number grk(G:H)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$gr_k(G:H)$$\end{document} is defined to be the minimum integer N such that if KN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K_N$$\end{document} is edge-colored with k colors, then there is either a rainbow G or a monochromatic H. It is known that grk(K3:C2n+1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$gr_k(K_3:C_{2n+1})$$\end{document} is exponential in k. In this note, we improve the upper bound for grk(K3:C2n+1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$gr_k(K_3:C_{2n+1})$$\end{document} obtained by Hall et al., and give bounds for grk(K3:Km,n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$gr_k(K_3:K_{m,n})$$\end{document}.
机构:
ITB, Fac Math & Nat Sci, Combinatorial Math Res Grp, Bandung 40132, IndonesiaITB, Fac Math & Nat Sci, Combinatorial Math Res Grp, Bandung 40132, Indonesia
Hasmawati
Assiyatun, H.
论文数: 0引用数: 0
h-index: 0
机构:
ITB, Fac Math & Nat Sci, Combinatorial Math Res Grp, Bandung 40132, IndonesiaITB, Fac Math & Nat Sci, Combinatorial Math Res Grp, Bandung 40132, Indonesia
Assiyatun, H.
Baskoro, E. T.
论文数: 0引用数: 0
h-index: 0
机构:
ITB, Fac Math & Nat Sci, Combinatorial Math Res Grp, Bandung 40132, IndonesiaITB, Fac Math & Nat Sci, Combinatorial Math Res Grp, Bandung 40132, Indonesia
Baskoro, E. T.
Salman, A. N. M.
论文数: 0引用数: 0
h-index: 0
机构:
ITB, Fac Math & Nat Sci, Combinatorial Math Res Grp, Bandung 40132, IndonesiaITB, Fac Math & Nat Sci, Combinatorial Math Res Grp, Bandung 40132, Indonesia
机构:
China Jiliang Univ, Coll Sci, Hangzhou 310018, Peoples R ChinaChina Jiliang Univ, Coll Sci, Hangzhou 310018, Peoples R China
Wang, Zhao
Mao, Yaping
论文数: 0引用数: 0
h-index: 0
机构:
Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
Acad Plateau Sci & Sustainabil, Xining 810008, Qinghai, Peoples R ChinaChina Jiliang Univ, Coll Sci, Hangzhou 310018, Peoples R China
Mao, Yaping
Magnant, Colton
论文数: 0引用数: 0
h-index: 0
机构:
Acad Plateau Sci & Sustainabil, Xining 810008, Qinghai, Peoples R China
United Parcel Serv, Adv Analyt Grp, Atlanta, GA USAChina Jiliang Univ, Coll Sci, Hangzhou 310018, Peoples R China
Magnant, Colton
Zou, Jinyu
论文数: 0引用数: 0
h-index: 0
机构:
Qinghai Univ, Dept Basic Course, Xining 810016, Peoples R ChinaChina Jiliang Univ, Coll Sci, Hangzhou 310018, Peoples R China