Gallai–Ramsey Numbers of Odd Cycles and Complete Bipartite Graphs

被引:0
|
作者
Ming Chen
Yusheng Li
Chaoping Pei
机构
[1] Tongji University,School of Mathematical Sciences
[2] Jiaxing University,College of Mathematics Physics and Information Engineering
来源
Graphs and Combinatorics | 2018年 / 34卷
关键词
Gallai–Ramsey number; Rainbow triangle; Cycle; Bipartite graph;
D O I
暂无
中图分类号
学科分类号
摘要
For graphs G and H and integer k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, the Gallai–Ramsey number grk(G:H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(G:H)$$\end{document} is defined to be the minimum integer N such that if KN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_N$$\end{document} is edge-colored with k colors, then there is either a rainbow G or a monochromatic H. It is known that grk(K3:C2n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(K_3:C_{2n+1})$$\end{document} is exponential in k. In this note, we improve the upper bound for grk(K3:C2n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(K_3:C_{2n+1})$$\end{document} obtained by Hall et al., and give bounds for grk(K3:Km,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(K_3:K_{m,n})$$\end{document}.
引用
收藏
页码:1185 / 1196
页数:11
相关论文
共 50 条
  • [31] Multipartite Ramsey Numbers for Odd Cycles
    Gyarfas, Andras
    Sarkozyz, Gabor N.
    Schelp, Richard H.
    JOURNAL OF GRAPH THEORY, 2009, 61 (01) : 12 - 21
  • [32] Bipartite Ramsey numbers for bipartite graphs of small bandwidth
    Shen, Lili
    Lin, Qizhong
    Liu, Qinghai
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [33] A conjecture on Gallai-Ramsey numbers of even cycles and paths
    Song, Zi-Xia
    Zhang, Jingmei
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 75 : 296 - 308
  • [34] Multicolored Bipartite Ramsey Numbers of Large Cycles
    Liu, Shao-qiang
    Peng, Yue-jian
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2023, 40 (2): : 347 - 357
  • [35] Bipartite anti-Ramsey numbers of cycles
    Axenovich, M
    Jiang, T
    Kündgen, A
    JOURNAL OF GRAPH THEORY, 2004, 47 (01) : 9 - 28
  • [36] Random bipartite Ramsey numbers of long cycles
    Liu, Meng
    Li, Yusheng
    DISCRETE APPLIED MATHEMATICS, 2024, 347 : 39 - 47
  • [37] Multicolored Bipartite Ramsey Numbers of Large Cycles
    Shao-qiang LIU
    Yue-jian PENG
    ActaMathematicaeApplicataeSinica, 2024, 40 (02) : 347 - 357
  • [38] Gallai-Ramsey numbers for graphs with chromatic number three
    Zhao, Qinghong
    Wei, Bing
    DISCRETE APPLIED MATHEMATICS, 2021, 304 : 110 - 118
  • [39] Multicolored Bipartite Ramsey Numbers of Large Cycles
    Shao-qiang Liu
    Yue-jian Peng
    Acta Mathematicae Applicatae Sinica, English Series, 2024, 40 : 347 - 357
  • [40] Correction to: Gallai–Ramsey Numbers for a Class of Graphs with Five Vertices
    Xihe Li
    Ligong Wang
    Graphs and Combinatorics, 2020, 36 (6) : 1619 - 1622