For graphs G and H and integer k≥1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k\ge 1$$\end{document}, the Gallai–Ramsey number grk(G:H)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$gr_k(G:H)$$\end{document} is defined to be the minimum integer N such that if KN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K_N$$\end{document} is edge-colored with k colors, then there is either a rainbow G or a monochromatic H. It is known that grk(K3:C2n+1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$gr_k(K_3:C_{2n+1})$$\end{document} is exponential in k. In this note, we improve the upper bound for grk(K3:C2n+1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$gr_k(K_3:C_{2n+1})$$\end{document} obtained by Hall et al., and give bounds for grk(K3:Km,n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$gr_k(K_3:K_{m,n})$$\end{document}.
机构:
Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
Jiaxing Univ, Coll Math Phys & Informat Engn, Jiaxing 314001, Zhejiang, Peoples R ChinaTongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
Chen, Ming
Li, Yusheng
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R ChinaTongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
Li, Yusheng
Pei, Chaoping
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R ChinaTongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
机构:
Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R ChinaNankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
Li, Luyi
Li, Xueliang
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
Qinghai Normal Univ, Acad Plateau Sci & Sustainabil, Xining 810008, Qinghai, Peoples R China
Stat Qinghai Normal Univ, Sch Math, Xining 810008, Qinghai, Peoples R ChinaNankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
Li, Xueliang
Mao, Yaping
论文数: 0引用数: 0
h-index: 0
机构:Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
Mao, Yaping
Si, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R ChinaNankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
机构:
Anhui Univ, Ctr Pure Math, Sch Math Sci, Hefei 230601, Anhui, Peoples R ChinaAnhui Univ, Ctr Pure Math, Sch Math Sci, Hefei 230601, Anhui, Peoples R China
Liu, Meng
Du, Bangwei
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Univ, Ctr Pure Math, Sch Math Sci, Hefei 230601, Anhui, Peoples R ChinaAnhui Univ, Ctr Pure Math, Sch Math Sci, Hefei 230601, Anhui, Peoples R China