Regularity of non-stationary subdivision: a matrix approach

被引:0
|
作者
M. Charina
C. Conti
N. Guglielmi
V. Protasov
机构
[1] University of Vienna,
[2] DIEF-University of Florence,undefined
[3] University of L’Aquila and Gran Sasso Science Institute,undefined
[4] Moscow State University and National Research University Higher School of Economics,undefined
来源
Numerische Mathematik | 2017年 / 135卷
关键词
65D17; 15A60; 39A99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study scalar multivariate non-stationary subdivision schemes with integer dilation matrix M and present a unifying, general approach for checking their convergence and for determining their Hölder regularity (latter in the case M=mI,m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M = mI, m \ge 2$$\end{document}). The combination of the concepts of asymptotic similarity and approximate sum rules allows us to link stationary and non-stationary settings and to employ recent advances in methods for exact computation of the joint spectral radius. As an application, we prove a recent conjecture by Dyn et al. on the Hölder regularity of the generalized Daubechies wavelets. We illustrate our results with several examples.
引用
收藏
页码:639 / 678
页数:39
相关论文
共 50 条
  • [41] Construction of Trigonometric Box Splines and the Associated Non-Stationary Subdivision Schemes
    Jena H.
    Jena M.K.
    International Journal of Applied and Computational Mathematics, 2021, 7 (4)
  • [42] Convergence of univariate non-stationary subdivision schemes via asymptotic similarity
    Conti, C.
    Dyn, N.
    Manni, C.
    Mazure, M. -L.
    COMPUTER AIDED GEOMETRIC DESIGN, 2015, 37 : 1 - 8
  • [43] A wavelet approach to non-stationary collocation
    Keller, W
    GEODESY BEYOND 2000: THE CHALLENGES OF THE FIRST DECADE, 2000, 121 : 208 - 213
  • [44] Non-stationary versions of fixed-point theory, with applications to fractals and subdivision
    David Levin
    Nira Dyn
    Viswanathan Puthan Veedu
    Journal of Fixed Point Theory and Applications, 2019, 21
  • [45] From approximating to interpolatory non-stationary subdivision schemes with the same generation properties
    Costanza Conti
    Luca Gemignani
    Lucia Romani
    Advances in Computational Mathematics, 2011, 35 : 217 - 241
  • [46] From approximating to interpolatory non-stationary subdivision schemes with the same generation properties
    Conti, Costanza
    Gemignani, Luca
    Romani, Lucia
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2011, 35 (2-4) : 217 - 241
  • [47] A new family of non-stationary hermite subdivision schemes reproducing exponential polynomials
    Jeong, Byeongseon
    Yoon, Jungho
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 366 (366)
  • [48] A new class of non-stationary interpolatory subdivision schemes based on exponential polynomials
    Choi, Yoo-Joo
    Lee, Yeon-Ju
    Yoon, Jungho
    Lee, Byung-Gook
    Kim, Young J.
    GEOMETRIC MODELING AND PROCESSING - GMP 2006, PROCEEDINGS, 2006, 4077 : 563 - 570
  • [49] Shape preservation of 4-point interpolating non-stationary subdivision scheme
    Akram, Ghazala
    Bibi, Khalida
    Rehan, Kashif
    Siddiqi, Shahid S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 319 : 480 - 492
  • [50] Non-stationary versions of fixed-point theory, with applications to fractals and subdivision
    Levin, David
    Dyn, Nira
    Veedu, Viswanathan Puthan
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2019, 21 (01)