Regularity of non-stationary subdivision: a matrix approach

被引:0
|
作者
M. Charina
C. Conti
N. Guglielmi
V. Protasov
机构
[1] University of Vienna,
[2] DIEF-University of Florence,undefined
[3] University of L’Aquila and Gran Sasso Science Institute,undefined
[4] Moscow State University and National Research University Higher School of Economics,undefined
来源
Numerische Mathematik | 2017年 / 135卷
关键词
65D17; 15A60; 39A99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study scalar multivariate non-stationary subdivision schemes with integer dilation matrix M and present a unifying, general approach for checking their convergence and for determining their Hölder regularity (latter in the case M=mI,m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M = mI, m \ge 2$$\end{document}). The combination of the concepts of asymptotic similarity and approximate sum rules allows us to link stationary and non-stationary settings and to employ recent advances in methods for exact computation of the joint spectral radius. As an application, we prove a recent conjecture by Dyn et al. on the Hölder regularity of the generalized Daubechies wavelets. We illustrate our results with several examples.
引用
收藏
页码:639 / 678
页数:39
相关论文
共 50 条