Regularity of non-stationary subdivision: a matrix approach

被引:0
|
作者
M. Charina
C. Conti
N. Guglielmi
V. Protasov
机构
[1] University of Vienna,
[2] DIEF-University of Florence,undefined
[3] University of L’Aquila and Gran Sasso Science Institute,undefined
[4] Moscow State University and National Research University Higher School of Economics,undefined
来源
Numerische Mathematik | 2017年 / 135卷
关键词
65D17; 15A60; 39A99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study scalar multivariate non-stationary subdivision schemes with integer dilation matrix M and present a unifying, general approach for checking their convergence and for determining their Hölder regularity (latter in the case M=mI,m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M = mI, m \ge 2$$\end{document}). The combination of the concepts of asymptotic similarity and approximate sum rules allows us to link stationary and non-stationary settings and to employ recent advances in methods for exact computation of the joint spectral radius. As an application, we prove a recent conjecture by Dyn et al. on the Hölder regularity of the generalized Daubechies wavelets. We illustrate our results with several examples.
引用
收藏
页码:639 / 678
页数:39
相关论文
共 50 条
  • [21] A family of non-stationary subdivision schemes reproducing exponential polynomials
    Jeong, Byeongseon
    Lee, Yeon Ju
    Yoon, Jungho
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (01) : 207 - 219
  • [22] A symmetric C3 non-stationary subdivision scheme
    Siddiqi, S. S.
    Younis, M.
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2014, 17 (01): : 259 - 272
  • [23] Family of odd point non-stationary subdivision schemes and their applications
    Abdul Ghaffar
    Zafar Ullah
    Mehwish Bari
    Kottakkaran Sooppy Nisar
    Dumitru Baleanu
    Advances in Difference Equations, 2019
  • [24] Family of odd point non-stationary subdivision schemes and their applications
    Ghaffar, Abdul
    Ullah, Zafar
    Bari, Mehwish
    Nisar, Kottakkaran Sooppy
    Baleanu, Dumitru
    ADVANCES IN DIFFERENCE EQUATIONS, 2019,
  • [25] Ternary approximating non-stationary subdivision schemes for curve design
    Siddiqi, Shahid S.
    Younis, Muhammad
    OPEN ENGINEERING, 2014, 4 (04): : 371 - 378
  • [26] Regularity of solutions to non-stationary Navier-Stokes equations
    Amosova, E., V
    ALL-RUSSIAN CONFERENCE AND SCHOOL FOR YOUNG SCIENTISTS, DEVOTED TO 100TH ANNIVERSARY OF ACADEMICIAN L.V. OVSIANNIKOV - MATHEMATICAL PROBLEMS OF CONTINUUM MECHANICS, 2019, 1268
  • [27] A maximal regularity estimate for the non-stationary Stokes equation in the strip
    Choffrut, Antoine
    Nobili, Camilla
    Otto, Felix
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (07) : 5589 - 5626
  • [28] A new non-stationary binary 6-point subdivision scheme
    Siddiqi, Shahid S.
    Salam, Wardat Us
    Rehan, Kashif
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 : 1227 - 1239
  • [29] A Symmetric Non-Stationary Loop Subdivision with Applications in Initial Point Interpolation
    Zhang, Baoxing
    Zhang, Yunkun
    Zheng, Hongchan
    SYMMETRY-BASEL, 2024, 16 (03):
  • [30] A non-stationary Catmull-Clark subdivision scheme with shape control
    Zhang, Baoxing
    Zheng, Hongchan
    Song, Weijie
    GRAPHICAL MODELS, 2019, 106