Regularity of non-stationary subdivision: a matrix approach

被引:0
|
作者
M. Charina
C. Conti
N. Guglielmi
V. Protasov
机构
[1] University of Vienna,
[2] DIEF-University of Florence,undefined
[3] University of L’Aquila and Gran Sasso Science Institute,undefined
[4] Moscow State University and National Research University Higher School of Economics,undefined
来源
Numerische Mathematik | 2017年 / 135卷
关键词
65D17; 15A60; 39A99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study scalar multivariate non-stationary subdivision schemes with integer dilation matrix M and present a unifying, general approach for checking their convergence and for determining their Hölder regularity (latter in the case M=mI,m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M = mI, m \ge 2$$\end{document}). The combination of the concepts of asymptotic similarity and approximate sum rules allows us to link stationary and non-stationary settings and to employ recent advances in methods for exact computation of the joint spectral radius. As an application, we prove a recent conjecture by Dyn et al. on the Hölder regularity of the generalized Daubechies wavelets. We illustrate our results with several examples.
引用
收藏
页码:639 / 678
页数:39
相关论文
共 50 条
  • [1] Regularity of non-stationary subdivision: a matrix approach
    Charina, M.
    Conti, C.
    Guglielmi, N.
    Protasov, V.
    NUMERISCHE MATHEMATIK, 2017, 135 (03) : 639 - 678
  • [2] Stationary and Non-Stationary Univariate Subdivision Schemes
    Asghar, Muhammad
    Mustafa, Ghulam
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2018, 50 (03): : 25 - 42
  • [3] Some non-stationary subdivision schemes
    Daniel, Sunita
    Shunmugaraj, P.
    GMAI 2007: GEOMETRIC MODELING AND IMAGING, PROCEEDINGS, 2007, : 33 - +
  • [4] An Efficient Computational Approach for Computing Subdivision Depth of Non-Stationary Binary Subdivision Schemes
    Karim, Samsul Ariffin Abdul
    Khan, Faheem
    Mustafa, Ghulam
    Shahzad, Aamir
    Asghar, Muhammad
    MATHEMATICS, 2023, 11 (11)
  • [5] Three point stationary and non-stationary subdivision schemes
    Daniel, Sunita
    Shunmugaraj, P.
    GEOMETRIC MODELING & IMAGING: MODERN TECHNIQUES AND APPLICATIONS, 2008, : 3 - 8
  • [6] Non-stationary Subdivision for Exponential Polynomials Reproduction
    Bao-jun LI
    Zhi-ling YU
    Bo-wen YU
    Zhi-xun SU
    Xiu-ping LIU
    Acta Mathematicae Applicatae Sinica, 2013, (03) : 567 - 578
  • [7] Non-stationary Subdivision for Exponential Polynomials Reproduction
    Li, Bao-jun
    Yu, Zhi-ling
    Yu, Bo-wen
    Su, Zhi-xun
    Liu, Xiu-ping
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (03): : 567 - 578
  • [8] Non-stationary subdivision for exponential polynomials reproduction
    Bao-jun Li
    Zhi-ling Yu
    Bo-wen Yu
    Zhi-xun SU
    Xiu-ping Liu
    Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 567 - 578
  • [9] Reproduction of exponential polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix
    Maria Charina
    Costanza Conti
    Lucia Romani
    Numerische Mathematik, 2014, 127 : 223 - 254
  • [10] Reproduction of exponential polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix
    Charina, Maria
    Conti, Costanza
    Romani, Lucia
    NUMERISCHE MATHEMATIK, 2014, 127 (02) : 223 - 254