Evaluation of a deep learning-based reconstruction method for denoising and image enhancement of shoulder MRI in patients with shoulder pain

被引:0
|
作者
Georg C. Feuerriegel
Kilian Weiss
Sophia Kronthaler
Yannik Leonhardt
Jan Neumann
Markus Wurm
Nicolas S. Lenhart
Marcus R. Makowski
Benedikt J. Schwaiger
Klaus Woertler
Dimitrios C. Karampinos
Alexandra S. Gersing
机构
[1] Technical University of Munich,Department of Radiology, Klinikum Rechts Der Isar, School of Medicine
[2] Philips GmbH Market DACH,Musculoskeletal Radiology Section, Klinikum Rechts Der Isar, School of Medicine
[3] Technical University of Munich,Department of Trauma Surgery, Klinikum Rechts Der Isar, School of Medicine
[4] Technical University of Munich,Department of Neuroradiology, Klinikum Rechts Der Isar, School of Medicine
[5] Technical University of Munich,Department of Neuroradiology
[6] University Hospital of Munich,undefined
[7] LMU Munich,undefined
来源
European Radiology | 2023年 / 33卷
关键词
Magnetic resonance imaging; Deep learning algorithm; Compressed SENSE; Shoulder injury;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:4875 / 4884
页数:9
相关论文
共 50 条
  • [41] A deep learning-based framework for retinal fundus image enhancement
    Lee, Kang Geon
    Song, Su Jeong
    Lee, Soochahn
    Yu, Hyeong Gon
    Kim, Dong Ik
    Lee, Kyoung Mu
    PLOS ONE, 2023, 18 (03):
  • [42] Complexities of deep learning-based undersampled MR image reconstruction
    Noordman, Constant Richard
    Yakar, Derya
    Bosma, Joeran
    Simonis, Frank Frederikus Jacobus
    Huisman, Henkjan
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2023, 7 (01)
  • [43] Robustness Analysis for Deep Learning-Based Image Reconstruction Models
    Ayna, Cemre Omer
    Gurbuz, Ali Cafer
    2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 1428 - 1432
  • [44] Complexities of deep learning-based undersampled MR image reconstruction
    Constant Richard Noordman
    Derya Yakar
    Joeran Bosma
    Frank Frederikus Jacobus Simonis
    Henkjan Huisman
    European Radiology Experimental, 7
  • [45] Deep Learning-Based Thermal Image Reconstruction and Object Detection
    Batchuluun, Ganbayar
    Kang, Jin Kyu
    Nguyen, Dat Tien
    Pham, Tuyen Danh
    Arsalan, Muhammad
    Park, Kang Ryoung
    IEEE ACCESS, 2021, 9 : 5951 - 5971
  • [46] Deep Learning-Based Image Reconstruction for CT Angiography of the Aorta
    Heinrich, Andra
    Streckenbach, Felix
    Beller, Ebba
    Gross, Justus
    Weber, Marc-Andre
    Meinel, Felix G.
    DIAGNOSTICS, 2021, 11 (11)
  • [47] Deep learning-based RGB-thermal image denoising: review and applications
    Yuan Yu
    Boon Giin Lee
    Matthew Pike
    Qian Zhang
    Wan-Young Chung
    Multimedia Tools and Applications, 2024, 83 : 11613 - 11641
  • [48] Evaluation of Deep Learning Based PET Image Enhancement Method in Diagnosis of Lymphoma
    Xu, Feng
    Pan, Boyang
    Zhu, Xiaochun
    Gulaka, Praveen
    Xiang, Lei
    Gong, Enhao
    Zhang, Tao
    Wang, Jiazheng
    Lin, Liangjie
    Ma, Yubo
    Gong, Nan-Jie
    JOURNAL OF NUCLEAR MEDICINE, 2020, 61
  • [49] Deep learning-based RGB-thermal image denoising: review and applications
    Yu, Yuan
    Lee, Boon Giin
    Pike, Matthew
    Zhang, Qian
    Chung, Wan-Young
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (04) : 11613 - 11641
  • [50] Impact of Emerging Deep Learning-Based MR Image Reconstruction Algorithms on Abdominal MRI Radiomic Features
    Li, Hailong
    Alves, Vinicius Vieira
    Pednekar, Amol
    Manhard, Mary Kate
    Greer, Joshua
    Trout, Andrew T.
    He, Lili
    Dillman, Jonathan R.
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2024, 48 (06) : 955 - 962