Evaluation of a deep learning-based reconstruction method for denoising and image enhancement of shoulder MRI in patients with shoulder pain

被引:0
|
作者
Georg C. Feuerriegel
Kilian Weiss
Sophia Kronthaler
Yannik Leonhardt
Jan Neumann
Markus Wurm
Nicolas S. Lenhart
Marcus R. Makowski
Benedikt J. Schwaiger
Klaus Woertler
Dimitrios C. Karampinos
Alexandra S. Gersing
机构
[1] Technical University of Munich,Department of Radiology, Klinikum Rechts Der Isar, School of Medicine
[2] Philips GmbH Market DACH,Musculoskeletal Radiology Section, Klinikum Rechts Der Isar, School of Medicine
[3] Technical University of Munich,Department of Trauma Surgery, Klinikum Rechts Der Isar, School of Medicine
[4] Technical University of Munich,Department of Neuroradiology, Klinikum Rechts Der Isar, School of Medicine
[5] Technical University of Munich,Department of Neuroradiology
[6] University Hospital of Munich,undefined
[7] LMU Munich,undefined
来源
European Radiology | 2023年 / 33卷
关键词
Magnetic resonance imaging; Deep learning algorithm; Compressed SENSE; Shoulder injury;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:4875 / 4884
页数:9
相关论文
共 50 条
  • [21] Analysis and Evaluation of a Deep Learning Reconstruction Approach with Denoising for Orthopedic MRI
    Koch, Kevin M.
    Sherafati, Mohammad
    Arpinar, V. Emre
    Bhave, Sampada
    Ausman, Robin
    Nencka, Andrew S.
    Lebel, R. Marc
    McKinnon, Graeme
    Kaushik, S. Sivaram
    Vierck, Douglas
    Stetz, Michael R.
    Fernando, Sujan
    Mannem, Rajeev
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (06)
  • [22] Deep Learning-Based Reconstruction for Cardiac MRI: A Review
    Oscanoa, Julio A.
    Middione, Matthew J.
    Alkan, Cagan
    Yurt, Mahmut
    Loecher, Michael
    Vasanawala, Shreyas S.
    Ennis, Daniel B.
    BIOENGINEERING-BASEL, 2023, 10 (03):
  • [23] Enhanced bone assessment of the shoulder using zero-echo time MRI with deep-learning image reconstruction
    Ensle, Falko
    Kaniewska, Malwina
    Lohezic, Maelene
    Guggenberger, Roman
    SKELETAL RADIOLOGY, 2024, 53 (12) : 2597 - 2606
  • [24] Deep Learning-Based Dictionary Learning and Tomographic Image Reconstruction
    Rudzusika, Jevgenija
    Koehler, Thomas
    Oktem, Ozan
    SIAM JOURNAL ON IMAGING SCIENCES, 2022, 15 (04): : 1729 - 1764
  • [25] A deep learning-based image reconstruction method for USCT that employs multimodality inputs
    Jeong, Gangwon
    Li, Fu
    Villa, Umberto
    Anastasio, Mark A.
    MEDICAL IMAGING 2023, 2023, 12470
  • [26] Deep learning-based PET image denoising and reconstruction: a review (vol 17, pg 24, 2024)
    Hashimoto, Fumio
    Onishi, Yuya
    Ote, Kibo
    Tashima, Hideaki
    Reader, Andrew J.
    Yamaya, Taiga
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2024, 17 (02) : 580 - 580
  • [27] Deep learning-based screening tool for rotator cuff tears on shoulder radiography
    Iio, Ryosuke
    Ueda, Daiju
    Matsumoto, Toshimasa
    Manaka, Tomoya
    Nakazawa, Katsumasa
    Ito, Yoichi
    Hirakawa, Yoshihiro
    Yamamoto, Akira
    Shiba, Masatsugu
    Nakamura, Hiroaki
    JOURNAL OF ORTHOPAEDIC SCIENCE, 2024, 29 (03) : 828 - 834
  • [28] Accelerated Cine Cardiac MRI Using Deep Learning-Based Reconstruction: A Systematic Evaluation
    Pednekar, Amol
    Kocaoglu, Murat
    Wang, Hui
    Tanimoto, Aki
    Tkach, Jean A.
    Lang, Sean
    Taylor, Michael D.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2024, 60 (02) : 640 - 650
  • [29] Dynamic PET Image Denoising With Deep Learning-Based Joint Filtering
    He, Yuru
    Cao, Shuangliang
    Zhang, Hongyan
    Sun, Hao
    Wang, Fanghu
    Zhu, Huobiao
    Lv, Wenbing
    Lu, Lijun
    IEEE ACCESS, 2021, 9 : 41998 - 42012
  • [30] Reconstruction of shoulder MRI using deep learning and compressed sensing: a validation study on healthy volunteers
    Dratsch, Thomas
    Siedek, Florian
    Zaeske, Charlotte
    Sonnabend, Kristina
    Rauen, Philip
    Terzis, Robert
    Hahnfeldt, Robert
    Maintz, David
    Persigehl, Thorsten
    Bratke, Grischa
    Iuga, Andra
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2023, 7 (01)