Evaluation of a deep learning-based reconstruction method for denoising and image enhancement of shoulder MRI in patients with shoulder pain

被引:0
|
作者
Georg C. Feuerriegel
Kilian Weiss
Sophia Kronthaler
Yannik Leonhardt
Jan Neumann
Markus Wurm
Nicolas S. Lenhart
Marcus R. Makowski
Benedikt J. Schwaiger
Klaus Woertler
Dimitrios C. Karampinos
Alexandra S. Gersing
机构
[1] Technical University of Munich,Department of Radiology, Klinikum Rechts Der Isar, School of Medicine
[2] Philips GmbH Market DACH,Musculoskeletal Radiology Section, Klinikum Rechts Der Isar, School of Medicine
[3] Technical University of Munich,Department of Trauma Surgery, Klinikum Rechts Der Isar, School of Medicine
[4] Technical University of Munich,Department of Neuroradiology, Klinikum Rechts Der Isar, School of Medicine
[5] Technical University of Munich,Department of Neuroradiology
[6] University Hospital of Munich,undefined
[7] LMU Munich,undefined
来源
European Radiology | 2023年 / 33卷
关键词
Magnetic resonance imaging; Deep learning algorithm; Compressed SENSE; Shoulder injury;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:4875 / 4884
页数:9
相关论文
共 50 条
  • [31] Reconstruction of shoulder MRI using deep learning and compressed sensing: a validation study on healthy volunteers
    Thomas Dratsch
    Florian Siedek
    Charlotte Zäske
    Kristina Sonnabend
    Philip Rauen
    Robert Terzis
    Robert Hahnfeldt
    David Maintz
    Thorsten Persigehl
    Grischa Bratke
    Andra Iuga
    European Radiology Experimental, 7
  • [32] Image Enhancement Method Based on Deep Learning
    Zhang, Peipei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [33] Image Enhancement Method Based on Deep Learning
    Zhang, Peipei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [34] Deep learning denoising reconstruction for improved image quality in fetal cardiac cine MRI
    Vollbrecht, Thomas M.
    Hart, Christopher
    Zhang, Shuo
    Katemann, Christoph
    Sprinkart, Alois M.
    Isaak, Alexander
    Attenberger, Ulrike
    Pieper, Claus C.
    Kuetting, Daniel
    Geipel, Annegret
    Strizek, Brigitte
    Luetkens, Julian A.
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2024, 11
  • [35] Deep-learning-based image quality enhancement of CT-like MR imaging in patients with suspected traumatic shoulder injury
    Feuerriegel, Georg C.
    Weiss, Kilian
    Van, Anh Tu
    Leonhardt, Yannik
    Neumann, Jan
    Gassert, Florian T.
    Haas, Yannick
    Schwarz, Markus
    Makowski, Marcus R.
    Woertler, Klaus
    Karampinos, Dimitrios C.
    Gersing, Alexandra S.
    EUROPEAN JOURNAL OF RADIOLOGY, 2024, 170
  • [36] Application of deep learning–based image reconstruction in MR imaging of the shoulder joint to improve image quality and reduce scan time
    Malwina Kaniewska
    Eva Deininger-Czermak
    Jonas M. Getzmann
    Xinzeng Wang
    Maelene Lohezic
    Roman Guggenberger
    European Radiology, 2023, 33 : 1513 - 1525
  • [37] Accelerating Whole-Body Diffusion-weighted MRI with Deep Learning-based Denoising Image Filters
    Zormpas-Petridis, Konstantinos
    Tunariu, Nina
    Curcean, Andra
    Messiou, Christina
    Curcean, Sebastian
    Collins, David J.
    Hughes, Julie C.
    Jamin, Yann
    Koh, Dow-Mu
    Blackledge, Matthew D.
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (05)
  • [38] An efficient learning-based method for underwater image enhancement
    Lyu, Zhangkai
    Peng, Andrew
    Wang, Qingwei
    Ding, Dandan
    Displays, 2022, 74
  • [39] An efficient learning-based method for underwater image enhancement
    Lyu, Zhangkai
    Peng, Andrew
    Wang, Qingwei
    Ding, Dandan
    DISPLAYS, 2022, 74
  • [40] Deep Learning-based Post Hoc CT Denoising for Myocardial Delayed Enhancement
    Nishii, Tatsuya
    Kobayashi, Takuma
    Tanaka, Hironori
    Kotoku, Akiyuki
    Ohta, Yasutoshi
    Morita, Yoshiaki
    Umehara, Kensuke
    Ota, Junko
    Horinouchi, Hiroki
    Ishida, Takayuki
    Fukuda, Tetsuya
    RADIOLOGY, 2022, 305 (01) : 81 - 90