Evaluation of a deep learning-based reconstruction method for denoising and image enhancement of shoulder MRI in patients with shoulder pain

被引:0
|
作者
Georg C. Feuerriegel
Kilian Weiss
Sophia Kronthaler
Yannik Leonhardt
Jan Neumann
Markus Wurm
Nicolas S. Lenhart
Marcus R. Makowski
Benedikt J. Schwaiger
Klaus Woertler
Dimitrios C. Karampinos
Alexandra S. Gersing
机构
[1] Technical University of Munich,Department of Radiology, Klinikum Rechts Der Isar, School of Medicine
[2] Philips GmbH Market DACH,Musculoskeletal Radiology Section, Klinikum Rechts Der Isar, School of Medicine
[3] Technical University of Munich,Department of Trauma Surgery, Klinikum Rechts Der Isar, School of Medicine
[4] Technical University of Munich,Department of Neuroradiology, Klinikum Rechts Der Isar, School of Medicine
[5] Technical University of Munich,Department of Neuroradiology
[6] University Hospital of Munich,undefined
[7] LMU Munich,undefined
来源
European Radiology | 2023年 / 33卷
关键词
Magnetic resonance imaging; Deep learning algorithm; Compressed SENSE; Shoulder injury;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:4875 / 4884
页数:9
相关论文
共 50 条
  • [1] Evaluation of a deep learning-based reconstruction method for denoising and image enhancement of shoulder MRI in patients with shoulder pain
    Feuerriegel, Georg C.
    Weiss, Kilian
    Kronthaler, Sophia
    Leonhardt, Yannik
    Neumann, Jan
    Wurm, Markus
    Lenhart, Nicolas S.
    Makowski, Marcus R.
    Schwaiger, Benedikt J.
    Woertler, Klaus
    Karampinos, Dimitrios C.
    Gersing, Alexandra S.
    EUROPEAN RADIOLOGY, 2023, 33 (07) : 4875 - 4884
  • [2] Image Quality and Diagnostic Performance of Accelerated Shoulder MRI With Deep Learning-Based Reconstruction
    Hahn, Seok
    Yi, Jisook
    Lee, Ho-Joon
    Lee, Yedaun
    Lim, Yun-Jung
    Bang, Jin-Young
    Kim, Hyunwoong
    Lee, Joonsung
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2022, 218 (03) : 506 - 516
  • [3] Comparison of deep learning-based reconstruction of PROPELLER Shoulder MRI with conventional reconstruction
    Seok Hahn
    Jisook Yi
    Ho-Joon Lee
    Yedaun Lee
    Joonsung Lee
    Xinzeng Wang
    Maggie Fung
    Skeletal Radiology, 2023, 52 : 1545 - 1555
  • [4] Comparison of deep learning-based reconstruction of PROPELLER Shoulder MRI with conventional reconstruction
    Hahn, Seok
    Yi, Jisook
    Lee, Ho-Joon
    Lee, Yedaun
    Lee, Joonsung
    Wang, Xinzeng
    Fung, Maggie
    SKELETAL RADIOLOGY, 2023, 52 (08) : 1545 - 1555
  • [5] Deep Learning-based Method for Denoising and Image Enhancement in Low-Field MRI
    Dang Bich Thuy Le
    Sadinski, Meredith
    Nacev, Aleksandar
    Narayanan, Ram
    Kumar, Dinesh
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2021,
  • [6] Deep learning-based PET image denoising and reconstruction: a review
    Hashimoto, Fumio
    Onishi, Yuya
    Ote, Kibo
    Tashima, Hideaki
    Reader, Andrew J.
    Yamaya, Taiga
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2024, 17 (01) : 24 - 46
  • [7] Deep learning-based PET image denoising and reconstruction: a review
    Fumio Hashimoto
    Yuya Onishi
    Kibo Ote
    Hideaki Tashima
    Andrew J. Reader
    Taiga Yamaya
    Radiological Physics and Technology, 2024, 17 : 24 - 46
  • [8] Revolutionizing Shoulder MRI: Accelerated Imaging with Deep Learning Reconstruction
    Chang, Peter D.
    Chow, Daniel S.
    RADIOLOGY, 2024, 310 (01)
  • [9] Deep learning-based reconstruction enhances image quality and improves diagnosis in magnetic resonance imaging of the shoulder joint
    Liu, Zijun
    Wen, Baohong
    Wang, Ziyu
    Wang, Kaiyu
    Xie, Lizhi
    Kang, Yimeng
    Tao, Qiuying
    Wang, Weijian
    Zhang, Yong
    Cheng, Jingliang
    Zhang, Yan
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (04) : 2840 - 2856
  • [10] Application of deep learning-based image reconstruction in MR imaging of the shoulder joint to improve image quality and reduce scan time
    Kaniewska, Malwina
    Deininger-Czermak, Eva
    Getzmann, Jonas M.
    Wang, Xinzeng
    Lohezic, Maelene
    Guggenberger, Roman
    EUROPEAN RADIOLOGY, 2023, 33 (03) : 1513 - 1525