Volume Distortion for Subsets of Euclidean Spaces

被引:0
|
作者
James R. Lee
机构
[1] University of Washington,
来源
关键词
Finite metric spaces; Approximation algorithms; Bi-Lipschitz geometry;
D O I
暂无
中图分类号
学科分类号
摘要
In Rao (Proceedings of the 15th Annual Symposium on Computational Geometry, pp. 300–306, 1999), it is shown that every n-point Euclidean metric with polynomial aspect ratio admits a Euclidean embedding with k-dimensional distortion bounded by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\sqrt{\log n\log k})$\end{document} , a result which is tight for constant values of k. We show that this holds without any assumption on the aspect ratio and give an improved bound of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\sqrt{\log n}(\log k)^{1/4})$\end{document} . Our main result is an upper bound of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\sqrt{\log n}\log\log n)$\end{document} independent of the value of k, nearly resolving the main open questions of Dunagan and Vempala (Randomization, Approximation, and Combinatorial Optimization, pp. 229–240, 2001) and Krauthgamer et al. (Discrete Comput. Geom. 31(3):339–356, 2004). The best previous bound was O(log n), and our bound is nearly tight, as even the two-dimensional volume distortion of an n-vertex path is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega(\sqrt{\log n})$\end{document} .
引用
收藏
页码:590 / 615
页数:25
相关论文
共 50 条
  • [41] LOCALLY PERIPHERALLY EUCLIDEAN SPACES ARE LOCALLY EUCLIDEAN
    HARROLD, OG
    ANNALS OF MATHEMATICS, 1961, 74 (02) : 207 - &
  • [42] Berkovich spaces embed in Euclidean spaces
    Hrushovski, Ehud
    Loeser, Francois
    Poonen, Bjorn
    ENSEIGNEMENT MATHEMATIQUE, 2014, 60 (3-4): : 273 - 292
  • [43] On the asymptotic magnitude of subsets of Euclidean space
    Tom Leinster
    Simon Willerton
    Geometriae Dedicata, 2013, 164 : 287 - 310
  • [44] ON NONMEASURABLE UNIFORM SUBSETS OF THE EUCLIDEAN PLANE
    Kharazishvili, Alexander
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2021, 175 (02) : 285 - 286
  • [45] Metric tangent spaces to Euclidean spaces
    Dordovski D.V.
    Journal of Mathematical Sciences, 2011, 179 (2) : 229 - 244
  • [46] On volumes determined by subsets of Euclidean space
    Greenleaf, Allan
    Iosevich, Alex
    Mourgoglou, Mihalis
    FORUM MATHEMATICUM, 2015, 27 (01) : 635 - 646
  • [47] Avoidable algebraic subsets of Euclidean space
    Schmerl, JH
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (06) : 2479 - 2489
  • [48] On the asymptotic magnitude of subsets of Euclidean space
    Leinster, Tom
    Willerton, Simon
    GEOMETRIAE DEDICATA, 2013, 164 (01) : 287 - 310
  • [49] On the Chromatic Number of Subsets of the Euclidean Plane
    Axenovich, M.
    Choi, J.
    Lastrina, M.
    McKay, T.
    Smith, J.
    Stanton, B.
    GRAPHS AND COMBINATORICS, 2014, 30 (01) : 71 - 81
  • [50] ON UNIFORM INCLUSION OF SPACES IN EUCLIDEAN SPACES
    BORUBAEV, AA
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1990, 43 (08): : 13 - 15