Volume Distortion for Subsets of Euclidean Spaces

被引:0
|
作者
James R. Lee
机构
[1] University of Washington,
来源
关键词
Finite metric spaces; Approximation algorithms; Bi-Lipschitz geometry;
D O I
暂无
中图分类号
学科分类号
摘要
In Rao (Proceedings of the 15th Annual Symposium on Computational Geometry, pp. 300–306, 1999), it is shown that every n-point Euclidean metric with polynomial aspect ratio admits a Euclidean embedding with k-dimensional distortion bounded by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\sqrt{\log n\log k})$\end{document} , a result which is tight for constant values of k. We show that this holds without any assumption on the aspect ratio and give an improved bound of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\sqrt{\log n}(\log k)^{1/4})$\end{document} . Our main result is an upper bound of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\sqrt{\log n}\log\log n)$\end{document} independent of the value of k, nearly resolving the main open questions of Dunagan and Vempala (Randomization, Approximation, and Combinatorial Optimization, pp. 229–240, 2001) and Krauthgamer et al. (Discrete Comput. Geom. 31(3):339–356, 2004). The best previous bound was O(log n), and our bound is nearly tight, as even the two-dimensional volume distortion of an n-vertex path is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega(\sqrt{\log n})$\end{document} .
引用
收藏
页码:590 / 615
页数:25
相关论文
共 50 条
  • [22] Random Euclidean embeddings in spaces of bounded volume ratio
    Litvak, A
    Pajor, A
    Rudelson, M
    Tomczak-Jaegermann, N
    Vershynin, R
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (01) : 33 - 38
  • [23] Generalized Hausdorff dimension distortion in Euclidean spaces under Sobolev mappings
    Rajala, T.
    Zapadinskaya, A.
    Zurcher, T.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 384 (02) : 468 - 477
  • [24] MULTIPLIERS IN BESOV-SPACES AND TRACES OF FUNCTIONS ON SUBSETS OF EUCLIDEAN-SPACE
    GULISASHVILI, AB
    DOKLADY AKADEMII NAUK SSSR, 1985, 281 (04): : 777 - 781
  • [25] NON-ACYCLIC MULTI-VALUED MAPPINGS OF SUBSETS OF EUCLIDEAN SPACES
    GORNIEWICZ, L
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1972, 20 (05): : 379 - +
  • [26] FRACTAL TUBE FORMULAS AND A MINKOWSKI MEASURABILITY CRITERION FOR COMPACT SUBSETS OF EUCLIDEAN SPACES
    Lapidus, Michel L.
    Radunovic, Goran
    Zubrinic, Darko
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (01): : 105 - 117
  • [27] EMBEDDING SNOWFLAKES OF CARNOT GROUPS INTO BOUNDED DIMENSIONAL EUCLIDEAN SPACES WITH OPTIMAL DISTORTION
    Ryoo, Seung-Yeon
    ANALYSIS & PDE, 2022, 15 (08): : 1933 - 1990
  • [28] Girth and Euclidean distortion
    Linial, N
    Magen, A
    Naor, A
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (02) : 380 - 394
  • [29] Girth and Euclidean distortion
    N. Linial
    A. Magen
    A. Naor
    Geometric & Functional Analysis GAFA, 2002, 12 : 380 - 394
  • [30] Euclidean embeddings in spaces of finite volume ratio via random matrices
    Litvak, AE
    Pajor, A
    Rudelson, M
    Tomczak-Jaegermann, N
    Vershynin, R
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2005, 589 : 1 - 19