Volume Distortion for Subsets of Euclidean Spaces

被引:0
|
作者
James R. Lee
机构
[1] University of Washington,
来源
关键词
Finite metric spaces; Approximation algorithms; Bi-Lipschitz geometry;
D O I
暂无
中图分类号
学科分类号
摘要
In Rao (Proceedings of the 15th Annual Symposium on Computational Geometry, pp. 300–306, 1999), it is shown that every n-point Euclidean metric with polynomial aspect ratio admits a Euclidean embedding with k-dimensional distortion bounded by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\sqrt{\log n\log k})$\end{document} , a result which is tight for constant values of k. We show that this holds without any assumption on the aspect ratio and give an improved bound of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\sqrt{\log n}(\log k)^{1/4})$\end{document} . Our main result is an upper bound of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\sqrt{\log n}\log\log n)$\end{document} independent of the value of k, nearly resolving the main open questions of Dunagan and Vempala (Randomization, Approximation, and Combinatorial Optimization, pp. 229–240, 2001) and Krauthgamer et al. (Discrete Comput. Geom. 31(3):339–356, 2004). The best previous bound was O(log n), and our bound is nearly tight, as even the two-dimensional volume distortion of an n-vertex path is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega(\sqrt{\log n})$\end{document} .
引用
收藏
页码:590 / 615
页数:25
相关论文
共 50 条
  • [31] THE UNIFORM SUBSETS OF THE EUCLIDEAN PLANE
    Beriashvili, Mariam
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2020, 174 (03) : 391 - 393
  • [32] SUBSETS OF EUCLIDEAN-SPACE
    CHARBONNEL, JY
    ANNALES DE L INSTITUT FOURIER, 1991, 41 (03) : 679 - 717
  • [33] THE EUCLIDEAN DISTORTION OF FLAT TORI
    Haviv, Ishay
    Regev, Oded
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2013, 5 (02) : 205 - 223
  • [34] The Euclidean Distortion of Flat Tori
    Haviv, Ishay
    Regev, Oded
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2010, 6302 : 232 - 245
  • [35] Euclidean distortion and the sparsest cut
    Arora, Sanjeev
    Lee, James R.
    Naor, Assaf
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 21 (01) : 1 - 21
  • [36] The Euclidean Distortion of the Lamplighter Group
    Tim Austin
    Assaf Naor
    Alain Valette
    Discrete & Computational Geometry, 2010, 44 : 55 - 74
  • [37] The Euclidean distortion of generalized polygons
    Kobayashi, Toshimasa
    Kondo, Takefumi
    ADVANCES IN GEOMETRY, 2015, 15 (04) : 499 - 506
  • [38] The Euclidean Distortion of the Lamplighter Group
    Austin, Tim
    Naor, Assaf
    Valette, Alain
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (01) : 55 - 74
  • [39] On Distance Mapping from non-Euclidean Spaces to Euclidean Spaces
    Ren, Wei
    Miche, Yoan
    Oliver, Ian
    Holtmanns, Silke
    Bjork, Kaj-Mikael
    Lendasse, Amaury
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, CD-MAKE 2017, 2017, 10410 : 3 - 13
  • [40] Computability on subsets of Euclidean space I: closed and compact subsets
    Brattka, V
    Weihrauch, K
    THEORETICAL COMPUTER SCIENCE, 1999, 219 (1-2) : 65 - 93