Einstein Gravity in Almost Kähler Variables and Stability of Gravity with Nonholonomic Distributions and Nonsymmetric Metrics

被引:0
|
作者
Sergiu I. Vacaru
机构
[1] The Fields Institute for Research in Mathematical Science,Faculty of Mathematics
[2] University “Al.I. Cuza” Iaşi,undefined
关键词
Gravity and symplectic variables; Nonsymmetric metrics; Nonholonomic manifolds; Nonlinear connections; Stability;
D O I
暂无
中图分类号
学科分类号
摘要
We argue that the Einstein gravity theory can be reformulated in almost Kähler (nonsymmetric) variables with effective symplectic form and compatible linear connection uniquely defined by a (pseudo) Riemannian metric. A class of nonsymmetric theories of gravitation on manifolds enabled with nonholonomic distributions is considered. We prove that, for certain types of nonholonomic constraints, there are modelled effective Lagrangians which do not develop instabilities. It is also elaborated a linearization formalism for anholonomic noncommutative gravity theories models and analyzed the stability of stationary ellipsoidal solutions defining some nonholonomic and/or nonsymmetric deformations of the Schwarzschild metric. We show how to construct nonholonomic distributions which remove instabilities in nonsymmetric gravity theories. It is concluded that instabilities do not consist a general feature of theories of gravity with nonsymmetric metrics but a particular property of some models and/or unconstrained solutions.
引用
收藏
页码:1973 / 1999
页数:26
相关论文
共 50 条
  • [21] Kähler-Einstein metrics and projective embeddings
    Dominique Hulin
    The Journal of Geometric Analysis, 2000, 10 (3): : 525 - 528
  • [22] Kähler–Einstein metrics on strictly pseudoconvex domains
    Craig van Coevering
    Annals of Global Analysis and Geometry, 2012, 42 : 287 - 315
  • [23] Geometry of Twisted Kähler–Einstein Metrics and Collapsing
    Mark Gross
    Valentino Tosatti
    Yuguang Zhang
    Communications in Mathematical Physics, 2020, 380 : 1401 - 1438
  • [24] Kähler-Einstein metrics of cohomogeneity one
    Andrew Dancer
    McKenzie Y. Wang
    Mathematische Annalen, 1998, 312 : 503 - 526
  • [25] Vaisman manifolds and transversally Kähler–Einstein metrics
    Vladimir Slesar
    Gabriel-Eduard Vîlcu
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 1855 - 1876
  • [26] Quantized Kähler Geometry and Quantum Gravity
    Jungjai Lee
    Hyun Seok Yang
    Journal of the Korean Physical Society, 2018, 72 : 1421 - 1441
  • [27] Ding stability and Kähler-Einstein metrics on manifolds with big anticanonical class
    Dervan, Ruadhai
    Reboulet, Remi
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (816): : 201 - 239
  • [28] A heterotic Kähler gravity and the distance conjecture
    Ibarra, Javier Jose Murgas
    Oehlmann, Paul-Konstantin
    Ruehle, Fabian
    Svanes, Eirik Eik
    JOURNAL OF HIGH ENERGY PHYSICS, 2025, (01):
  • [29] Modified Extremal Kähler Metrics and Multiplier Hermitian-Einstein Metrics
    Nakagawa, Yasuhiro
    Nakamura, Satoshi
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (04)
  • [30] Scalar Curvature Functions of Almost-Kähler Metrics
    Jongsu Kim
    Chanyoung Sung
    The Journal of Geometric Analysis, 2016, 26 : 2711 - 2728