Einstein Gravity in Almost Kähler Variables and Stability of Gravity with Nonholonomic Distributions and Nonsymmetric Metrics

被引:0
|
作者
Sergiu I. Vacaru
机构
[1] The Fields Institute for Research in Mathematical Science,Faculty of Mathematics
[2] University “Al.I. Cuza” Iaşi,undefined
关键词
Gravity and symplectic variables; Nonsymmetric metrics; Nonholonomic manifolds; Nonlinear connections; Stability;
D O I
暂无
中图分类号
学科分类号
摘要
We argue that the Einstein gravity theory can be reformulated in almost Kähler (nonsymmetric) variables with effective symplectic form and compatible linear connection uniquely defined by a (pseudo) Riemannian metric. A class of nonsymmetric theories of gravitation on manifolds enabled with nonholonomic distributions is considered. We prove that, for certain types of nonholonomic constraints, there are modelled effective Lagrangians which do not develop instabilities. It is also elaborated a linearization formalism for anholonomic noncommutative gravity theories models and analyzed the stability of stationary ellipsoidal solutions defining some nonholonomic and/or nonsymmetric deformations of the Schwarzschild metric. We show how to construct nonholonomic distributions which remove instabilities in nonsymmetric gravity theories. It is concluded that instabilities do not consist a general feature of theories of gravity with nonsymmetric metrics but a particular property of some models and/or unconstrained solutions.
引用
收藏
页码:1973 / 1999
页数:26
相关论文
共 50 条
  • [41] Kähler–Einstein metrics along the smooth continuity method
    Ved Datar
    Gábor Székelyhidi
    Geometric and Functional Analysis, 2016, 26 : 975 - 1010
  • [42] Twisted Kähler-Einstein metrics in big classes
    Darvas, Tamas
    Zhang, Kewei
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (12) : 4289 - 4327
  • [43] Asymptotics of Kähler–Einstein metrics on complex hyperbolic cusps
    Xin Fu
    Hans-Joachim Hein
    Xumin Jiang
    Calculus of Variations and Partial Differential Equations, 2024, 63
  • [44] Variations of Kähler–Einstein metrics on strongly pseudoconvex domains
    Young-Jun Choi
    Mathematische Annalen, 2015, 362 : 121 - 146
  • [45] Conformally Kähler, Einstein–Maxwell metrics on Hirzebruch surfaces
    Isaque Viza de Souza
    Annals of Global Analysis and Geometry, 2021, 59 : 263 - 284
  • [46] Kähler–Einstein metrics on symmetric general arrangement varieties
    Jacob Cable
    manuscripta mathematica, 2022, 168 : 119 - 135
  • [47] Kähler-Einstein metrics on families of Fano varieties
    Pan, Chung-Ming
    Trusiani, Antonio
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2025, 2025 (819): : 45 - 87
  • [48] Deformations of Almost-Kähler Metrics with Constant Scalar Curvature on Compact Kähler Manifolds
    Jongsu Kim
    Chanyoung Sung
    Annals of Global Analysis and Geometry, 2002, 22 : 49 - 73
  • [49] A Note on the Complete Kähler–Einstein Metrics of Disk Bundles Over Compact Homogeneous Kähler Manifolds
    Yihong Hao
    An Wang
    Liyou Zhang
    The Journal of Geometric Analysis, 2023, 33
  • [50] Homogeneous almost-Kähler manifolds and the Chern–Einstein equation
    Dmitri V. Alekseevsky
    Fabio Podestà
    Mathematische Zeitschrift, 2020, 296 : 831 - 846