Geometry of Twisted Kähler–Einstein Metrics and Collapsing

被引:0
|
作者
Mark Gross
Valentino Tosatti
Yuguang Zhang
机构
[1] DPMMS,Department of Mathematics and Statistics
[2] University of Cambridge,Department of Mathematics
[3] McGill University,Department of Mathematical Sciences
[4] Northwestern University, Riemann Center for Geometry and Physics
[5] University of Bath,undefined
[6] Leibniz Universität Hannover,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the twisted Kähler–Einstein metrics that arise on the base of certain holomorphic fiber space with Calabi–Yau fibers have conical-type singularities along the discriminant locus. These fiber spaces arise naturally when studying the collapsing of Ricci-flat Kähler metrics on Calabi–Yau manifolds, and of the Kähler–Ricci flow on compact Kähler manifolds with semiample canonical bundle and intermediate Kodaira dimension. Our results allow us to understand their collapsed Gromov–Hausdorff limits when the base is smooth and the discriminant has simple normal crossings.
引用
收藏
页码:1401 / 1438
页数:37
相关论文
共 50 条
  • [1] Geometry of Twisted Kahler-Einstein Metrics and Collapsing
    Gross, Mark
    Tosatti, Valentino
    Zhang, Yuguang
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 380 (03) : 1401 - 1438
  • [2] Twisted Kähler-Einstein metrics on flag varieties
    Correa, Eder M.
    Grama, Lino
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (11) : 4273 - 4287
  • [3] Twisted Kähler-Einstein metrics in big classes
    Darvas, Tamas
    Zhang, Kewei
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (12) : 4289 - 4327
  • [4] Special metrics in Kähler geometry
    Eleonora Di Nezza
    Bollettino dell'Unione Matematica Italiana, 2021, 14 : 43 - 49
  • [5] Kähler Geometry of Scalar Flat Metrics on Line Bundles Over Polarized Kähler-Einstein Manifolds
    Cristofori, Simone
    Zedda, Michela
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (06)
  • [6] Families of conic Kähler–Einstein metrics
    Henri Guenancia
    Mathematische Annalen, 2020, 376 : 1 - 37
  • [7] Kähler–Einstein metrics on Fano manifolds
    Gang Tian
    Japanese Journal of Mathematics, 2015, 10 : 1 - 41
  • [8] Quasi-Einstein Kähler Metrics
    Henrik Pedersen
    Christina Tønnesen-Friedman
    Galliano Valent
    Letters in Mathematical Physics, 1999, 50 : 229 - 241
  • [9] Conical Kähler–Einstein Metrics Revisited
    Chi Li
    Song Sun
    Communications in Mathematical Physics, 2014, 331 : 927 - 973
  • [10] Kähler–Einstein metrics on group compactifications
    Thibaut Delcroix
    Geometric and Functional Analysis, 2017, 27 : 78 - 129