Lower bounds on the minimum distance of long codes in the Lee metric

被引:0
|
作者
Hugues Randriam
Lin Sok
Patrick Solé
机构
[1] Telecom ParisTech,Mathematics Department
[2] King Abdulaziz University,undefined
来源
关键词
Lee metric; Geometric codes; Ihara function; Gilbert bound; 94B65; 94B27;
D O I
暂无
中图分类号
学科分类号
摘要
The Gilbert type bound for codes in the title is reviewed, both for small and large alphabets. Constructive lower bounds better than these existential bounds are derived from geometric codes, either over Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb F _p$$\end{document} or Fp2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb F _{p^2},$$\end{document} or over even degree extensions of Fp.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb F _p.$$\end{document} In the latter case the approach is concatenation with a good code for the Hamming metric as outer code and a short code for the Lee metric as an inner code. In the former case lower bounds on the minimum Lee distance are derived by algebraic geometric arguments inspired by results of Wu et al. (Electron Lett 15(43):820–821, 2007).
引用
收藏
页码:441 / 452
页数:11
相关论文
共 50 条
  • [31] Generalizing Bounds on the Minimum Distance of Cyclic Codes Using Cyclic Product Codes
    Zeh, Alexander
    Wachter-Zeh, Antonia
    Gadouleau, Maximilien
    Bezzateev, Sergey
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 126 - +
  • [32] algebraic lower bounds on the free distance of convolutional codes
    Lally, K
    2005 IEEE International Symposium on Information Theory (ISIT), Vols 1 and 2, 2005, : 916 - 920
  • [33] Algebraic lower bounds on the free distance of convolutional codes
    Lally, K
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (05) : 2101 - 2110
  • [34] NEW MINIMUM DISTANCE BOUNDS FOR CERTAIN BINARY LINEAR CODES
    DASKALOV, RN
    KAPRALOV, SN
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (06) : 1795 - 1796
  • [35] Generalization of Tanner's minimum distance bounds for LDPC codes
    Shin, Min-Ho
    Kim, Joon-Sung
    Song, Hong-Yeop
    IEEE Commun Lett, 3 (240-242):
  • [36] New Bounds on the Size of Binary Codes With Large Minimum Distance
    Pang J.C.-J.
    Mahdavifar H.
    Sandeep Pradhan S.
    IEEE Journal on Selected Areas in Information Theory, 2023, 4 : 219 - 231
  • [37] ASYMPTOTIC UPPER BOUNDS ON THE MINIMUM DISTANCE OF TRELLIS CODES.
    Calderbank, A.Robert
    Mazo, J.E.
    Wei, Victor K.
    IEEE Transactions on Communications, 1985, COM-33 (04): : 305 - 309
  • [38] Bounds on minimum distance for linear codes over GF(5)
    Daskalov, RN
    Gulliver, TA
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1999, 9 (06) : 547 - 558
  • [39] ASYMPTOTIC UPPER-BOUNDS ON THE MINIMUM DISTANCE OF TRELLIS CODES
    CALDERBANK, AR
    MAZO, JE
    WEI, VK
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1985, 33 (04) : 305 - 309
  • [40] Upper bounds on the rate of LDPC codes as a function of minimum distance
    Ben-Haim, Y
    Litsyn, S
    2005 IEEE International Symposium on Information Theory (ISIT), Vols 1 and 2, 2005, : 47 - 51