Lower bounds on the minimum distance of long codes in the Lee metric

被引:0
|
作者
Hugues Randriam
Lin Sok
Patrick Solé
机构
[1] Telecom ParisTech,Mathematics Department
[2] King Abdulaziz University,undefined
来源
关键词
Lee metric; Geometric codes; Ihara function; Gilbert bound; 94B65; 94B27;
D O I
暂无
中图分类号
学科分类号
摘要
The Gilbert type bound for codes in the title is reviewed, both for small and large alphabets. Constructive lower bounds better than these existential bounds are derived from geometric codes, either over Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb F _p$$\end{document} or Fp2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb F _{p^2},$$\end{document} or over even degree extensions of Fp.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb F _p.$$\end{document} In the latter case the approach is concatenation with a good code for the Hamming metric as outer code and a short code for the Lee metric as an inner code. In the former case lower bounds on the minimum Lee distance are derived by algebraic geometric arguments inspired by results of Wu et al. (Electron Lett 15(43):820–821, 2007).
引用
收藏
页码:441 / 452
页数:11
相关论文
共 50 条
  • [41] Bounds on the Maximal Minimum Distance of Linear Locally Repairable Codes
    Pollanen, Antti
    Westerback, Thomas
    Freij-Hollanti, Ragnar
    Hollanti, Camilla
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 1586 - 1590
  • [42] Generalized upper bounds on the minimum distance of PSK block codes
    Laksman, Efraim
    Lennerstad, Hakan
    Nilsson, Magnus
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2015, 32 (02) : 305 - 327
  • [43] Upper bounds on the rate of LDPC codes as a function of minimum distance
    Ben-Haim, Y
    Litsyn, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (05) : 2092 - 2100
  • [44] Generalization of Tanner's minimum distance bounds for LDPC codes
    Shin, MH
    Kim, JS
    Song, HY
    IEEE COMMUNICATIONS LETTERS, 2005, 9 (03) : 240 - 242
  • [45] Bounds on Minimum Distance for Linear Codes over GF(5)
    Rumen N. Daskalov
    T. Aaron Gulliver
    Applicable Algebra in Engineering, Communication and Computing, 1999, 9 : 547 - 558
  • [46] Sum-rank product codes and bounds on the minimum distance
    Alfarano, Gianira N.
    Lobillo, F. J.
    Neri, Alessandro
    Wachter-Zeh, Antonia
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 80
  • [47] Bounds on minimum distance for linear codes over GF(q)
    Abdullah, Fardos N.
    Yahya, Nada Yassen Kasm
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (45): : 894 - 903
  • [48] A Lower Bound on Minimum Distance of Convolutional Polar Codes
    Morozov, Ruslan
    Trifonov, Peter
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 2104 - 2108
  • [49] A LOWER BOUND ON THE MINIMUM EUCLIDEAN DISTANCE OF TRELLIS CODES
    ROUANNE, M
    COSTELLO, DJ
    LECTURE NOTES IN COMPUTER SCIENCE, 1988, 311 : 130 - 140
  • [50] CONCATENATED CODES FOR THE LEE METRIC
    ASTOLA, JT
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (05) : 778 - 779