Bounds on minimum distance for linear codes over GF(5)

被引:8
|
作者
Daskalov, RN [1 ]
Gulliver, TA
机构
[1] Tech Univ, Dept Math, BG-5300 Gabrovo, Bulgaria
[2] Univ Canberra, Dept Elect & Elect Engn, Christchurch, New Zealand
关键词
quasi-cyclic codes; linear codes over GF(5);
D O I
10.1007/s002000050117
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let [n, k, d; q]-codes be linear codes of length n, dimension k and minimum Hamming distance d over GF(q), Let d(5)(n, k) be the maximum possible minimum Hamming distance of a linear [n, k, d; 5]-code for given values of n and k. In this paper, forty four new linear codes over GF(5) are constructed and a table of d5 (n, k) k less than or equal to 8, n less than or equal to 100 is presented.
引用
收藏
页码:547 / 558
页数:12
相关论文
共 50 条
  • [1] Bounds on Minimum Distance for Linear Codes over GF(5)
    Rumen N. Daskalov
    T. Aaron Gulliver
    Applicable Algebra in Engineering, Communication and Computing, 1999, 9 : 547 - 558
  • [2] New minimum distance bounds for linear codes over GF(5)
    Daskalov, R
    Hristov, P
    Metodieva, E
    DISCRETE MATHEMATICS, 2004, 275 (1-3) : 97 - 110
  • [3] Bounds on minimum distance for linear codes over GF(q)
    Abdullah, Fardos N.
    Yahya, Nada Yassen Kasm
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (45): : 894 - 903
  • [4] New Minimum Distance Bounds for Linear Codes over GF(9)
    R. Daskalov
    E. Metodieva
    P. Hristov
    Problems of Information Transmission, 2004, 40 (1) : 13 - 24
  • [5] New Minimum Distance Bounds for Linear Codes over Small Fields
    R. N. Daskalov
    T. A. Gulliver
    Problems of Information Transmission, 2001, 37 (3) : 206 - 215
  • [6] New minimum-distance bounds for linear codes over small fields
    Daskalov, R.N.
    Gulliver, T.A.
    Problemy Peredachi Informatsii, 2001, 37 (03): : 24 - 33
  • [7] MINIMUM-DISTANCE BOUNDS FOR BINARY LINEAR CODES
    HELGERT, HJ
    STINAFF, RD
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (03) : 344 - 356
  • [8] ON THE DIMENSION AND MINIMUM DISTANCE OF BCH CODES OVER GF(q)
    Yue Dianwu Hu Zhengming(Dept. of Information Engineering
    JournalofElectronics(China), 1996, (03) : 216 - 221
  • [9] NEW MINIMUM DISTANCE BOUNDS FOR CERTAIN BINARY LINEAR CODES
    DASKALOV, RN
    KAPRALOV, SN
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (06) : 1795 - 1796
  • [10] Bounds on the Maximal Minimum Distance of Linear Locally Repairable Codes
    Pollanen, Antti
    Westerback, Thomas
    Freij-Hollanti, Ragnar
    Hollanti, Camilla
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 1586 - 1590