Linear complementary pairs of codes over rings

被引:0
|
作者
Peng Hu
Xiusheng Liu
机构
[1] Hubei Polytechnic University,School of Mathematics and Physics
[2] College of Arts and Science of Hubei Normal University,School of Science and Technology
来源
关键词
Chain rings; LCP of codes; Constacylic codes; Generating polynomials; 94B05; 94B15; 94B60; 94B99;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we first prove a necessary and sufficient condition for a pairs of linear codes over finite rings to be linear complementary pairs (abbreviated to LCPs). In particular, a judging criterion of free LCP of codes over finite commutative rings is obtained. Using the criterion of free LCP of codes, we construct a maximum-distance-separable (MDS) LCP of codes over ring Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_4$$\end{document}. Then, all the possible LCP of codes over chain rings are determined. We also generalize the criterions for constacyclic and quasi-cyclic LCP of codes over finite fields to constacyclic and quasi-cyclic LCP of codes over chain rings. Finally, we give a characterization of LCP of codes over principal ideal rings. Under suitable conditions, we also obtain the judging criterion for a pairs of cyclic codes over principal ideal rings Zk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{k}$$\end{document} to be LCP, and illustrate a MDS LCP of cyclic codes over the principal ideal ring Z15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{15}$$\end{document}.
引用
收藏
页码:2495 / 2509
页数:14
相关论文
共 50 条
  • [41] Projective linear codes and their simplex complementary codes
    Chen, Hao
    Xie, Conghui
    JOURNAL OF ALGEBRA, 2025, 673 : 304 - 320
  • [42] LINEAR CODES WITH COMPLEMENTARY DUALS
    MASSEY, JL
    DISCRETE MATHEMATICS, 1992, 106 : 337 - 342
  • [43] Linear and cyclic codes over direct product of finite chain rings
    Borges, J.
    Fernandez-Cordoba, C.
    Ten-Valls, R.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (16) : 6519 - 6529
  • [44] The maximum number of homogeneous weights of linear codes over chain rings
    Shi, Minjia
    Tong, Tingting
    Honold, Thomas
    Sole, Patrick
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 60 (03) : 667 - 688
  • [45] A class of linear codes of length 2 over finite chain rings
    Cao, Yonglin
    Cao, Yuan
    Dinh, Hai Q.
    Fu, Fang-Wei
    Gao, Jian
    Sriboonchitta, Songsak
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (06)
  • [46] Errata for “The linear programming bound for codes over finite Frobenius rings”
    Eimear Byrne
    Marcus Greferath
    Michael E. O’Sullivan
    Designs, Codes and Cryptography, 2007, 45 : 269 - 270
  • [47] Generalized Gaussian Numbers Related to Linear Codes over Galois Rings
    Salturk, Esengul
    Siap, Irfan
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2012, 5 (02): : 250 - 259
  • [48] Secret Sharing Schemes from Linear Codes over Finite Rings
    Qian, Jianfa
    Ma, Wenping
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2012, E95A (07) : 1193 - 1196
  • [49] On Linear Codes over Local Rings of Order p4
    Alabiad, Sami
    Alhomaidhi, Alhanouf Ali
    Alsarori, Nawal A.
    MATHEMATICS, 2024, 12 (19)
  • [50] Linear Codes over Finite Chain Rings and Projective Hjelmslev Geometries
    Honold, Thomas
    Landjev, Ivan
    CODES OVER RINGS, 2009, 6 : 60 - +