Linear complementary pairs of codes over rings

被引:0
|
作者
Peng Hu
Xiusheng Liu
机构
[1] Hubei Polytechnic University,School of Mathematics and Physics
[2] College of Arts and Science of Hubei Normal University,School of Science and Technology
来源
关键词
Chain rings; LCP of codes; Constacylic codes; Generating polynomials; 94B05; 94B15; 94B60; 94B99;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we first prove a necessary and sufficient condition for a pairs of linear codes over finite rings to be linear complementary pairs (abbreviated to LCPs). In particular, a judging criterion of free LCP of codes over finite commutative rings is obtained. Using the criterion of free LCP of codes, we construct a maximum-distance-separable (MDS) LCP of codes over ring Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_4$$\end{document}. Then, all the possible LCP of codes over chain rings are determined. We also generalize the criterions for constacyclic and quasi-cyclic LCP of codes over finite fields to constacyclic and quasi-cyclic LCP of codes over chain rings. Finally, we give a characterization of LCP of codes over principal ideal rings. Under suitable conditions, we also obtain the judging criterion for a pairs of cyclic codes over principal ideal rings Zk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{k}$$\end{document} to be LCP, and illustrate a MDS LCP of cyclic codes over the principal ideal ring Z15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{15}$$\end{document}.
引用
收藏
页码:2495 / 2509
页数:14
相关论文
共 50 条
  • [31] Constacyclic and Linear Complementary Dual Codes Over Fq + uFq
    Prakash, Om
    Yadav, Shikha
    Verma, Ram Krishna
    DEFENCE SCIENCE JOURNAL, 2020, 70 (06) : 626 - 632
  • [32] The linear programming bound for codes over finite Frobenius rings
    Eimear Byrne
    Marcus Greferath
    Michael E. O’Sullivan
    Designs, Codes and Cryptography, 2007, 42
  • [33] The linear programming bound for codes over finite Frobenius rings
    Byrne, Eimear
    Greferath, Marcus
    O'Sullivan, Michael E.
    DESIGNS CODES AND CRYPTOGRAPHY, 2007, 42 (03) : 289 - 301
  • [34] Notes on linear codes over finite commutative chain rings
    Liu, Zi-hui
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2011, 27 (01): : 141 - 148
  • [35] Notes on linear codes over finite commutative chain rings
    Zi-hui Liu
    Acta Mathematicae Applicatae Sinica, English Series, 2011, 27 : 141 - 148
  • [36] Galois correspondence on linear codes over finite chain rings
    Tabue, Alexandre Fotue
    Martinez-Moro, Edgar
    Mouaha, Christophe
    DISCRETE MATHEMATICS, 2020, 343 (02)
  • [37] MacWilliams identities for linear codes over finite Frobenius rings
    Honold, T
    Landjev, I
    FINITE FIELDS AND APPLICATIONS, 2001, : 276 - 292
  • [38] On homogeneous arcs and linear codes over finite chain rings
    Thomas Honold
    Ivan Landjev
    Applicable Algebra in Engineering, Communication and Computing, 2023, 34 : 359 - 375
  • [39] On homogeneous arcs and linear codes over finite chain rings
    Honold, Thomas
    Landjev, Ivan
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023, 34 (03) : 359 - 375
  • [40] Dihedral codes with 1-dimensional hulls and 1-dimensional linear complementary pairs of dihedral codes
    Dougherty, S. T.
    Sahinkaya, Serap
    Ustun, Deniz
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023, 36 (3) : 471 - 491