A class of linear codes of length 2 over finite chain rings

被引:18
|
作者
Cao, Yonglin [1 ]
Cao, Yuan [1 ,2 ]
Dinh, Hai Q. [3 ,4 ]
Fu, Fang-Wei [5 ,6 ]
Gao, Jian [1 ]
Sriboonchitta, Songsak [7 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255091, Shandong, Peoples R China
[2] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Hunan, Peoples R China
[3] Ton Duc Thang Univ, Div Computat Math & Engn, Inst Computat Sci, Ho Chi Minh City, Vietnam
[4] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[5] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[6] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[7] Chiang Mai Univ, Fac Econ, Chiang Mai 52000, Thailand
基金
中国国家自然科学基金;
关键词
Linear codes; constacyclic codes; generator matrix; finite chain rings; PLUS ALPHA-U(2))-CONSTACYCLIC CODES; ROOT CONSTACYCLIC CODES; COMPLETE CLASSIFICATION; NEGACYCLIC CODES; CYCLIC CODES;
D O I
10.1142/S0219498820501030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F-pm be a finite field of cardinality p(m), where p is an odd prime, k, lambda be positive integers satisfying lambda >= 2, and denote K= Fp(m) [x]/ < f (x)(lambda pk)>, where f (x) is an irreducible polynomial in F-pm [a]. In this note, for any fixed invertible element omega is an element of K-x, we present all distinct linear codes S over K of length 2 satisfying the condition: (omega f (x)p(k) a(1), a(0)) is an element of S for all (a(0), a(1)) is an element of S. This conclusion can be used to determine the structure of (delta + alpha u(2))-constacyclic codes over the finite chain ring F-pm [u]/< u(2 lambda)> of length np(k) for any positive integer n satisfying gcd(p, n) = 1.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Linear Codes over Finite Chain Rings
    Liu, Hongwei
    ARS COMBINATORIA, 2010, 95 : 511 - 529
  • [2] A class of constacyclic codes over finite chain rings
    Zhang, Guanghui
    ARS COMBINATORIA, 2019, 146 : 37 - 50
  • [3] Quantum codes over a class of finite chain rings
    1600, Rinton Press Inc. (16): : 1 - 2
  • [4] QUANTUM CODES OVER A CLASS OF FINITE CHAIN RINGS
    Sari, Mustafa
    Siap, Irfan
    QUANTUM INFORMATION & COMPUTATION, 2016, 16 (1-2) : 39 - 49
  • [5] Quantum codes from linear codes over finite chain rings
    Liu, Xiusheng
    Liu, Hualu
    QUANTUM INFORMATION PROCESSING, 2017, 16 (10)
  • [6] Quantum codes from linear codes over finite chain rings
    Xiusheng Liu
    Hualu Liu
    Quantum Information Processing, 2017, 16
  • [7] CYCLIC CODES OF LENGTH 2pn OVER FINITE CHAIN RINGS
    Silva, Anderson
    Milies, C. Polcino
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, 14 (02) : 233 - 245
  • [8] Notes on linear codes over finite commutative chain rings
    Liu, Zi-hui
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2011, 27 (01): : 141 - 148
  • [9] Notes on linear codes over finite commutative chain rings
    Zi-hui Liu
    Acta Mathematicae Applicatae Sinica, English Series, 2011, 27 : 141 - 148
  • [10] Galois correspondence on linear codes over finite chain rings
    Tabue, Alexandre Fotue
    Martinez-Moro, Edgar
    Mouaha, Christophe
    DISCRETE MATHEMATICS, 2020, 343 (02)