A class of linear codes of length 2 over finite chain rings

被引:18
|
作者
Cao, Yonglin [1 ]
Cao, Yuan [1 ,2 ]
Dinh, Hai Q. [3 ,4 ]
Fu, Fang-Wei [5 ,6 ]
Gao, Jian [1 ]
Sriboonchitta, Songsak [7 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255091, Shandong, Peoples R China
[2] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Hunan, Peoples R China
[3] Ton Duc Thang Univ, Div Computat Math & Engn, Inst Computat Sci, Ho Chi Minh City, Vietnam
[4] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[5] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[6] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[7] Chiang Mai Univ, Fac Econ, Chiang Mai 52000, Thailand
基金
中国国家自然科学基金;
关键词
Linear codes; constacyclic codes; generator matrix; finite chain rings; PLUS ALPHA-U(2))-CONSTACYCLIC CODES; ROOT CONSTACYCLIC CODES; COMPLETE CLASSIFICATION; NEGACYCLIC CODES; CYCLIC CODES;
D O I
10.1142/S0219498820501030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F-pm be a finite field of cardinality p(m), where p is an odd prime, k, lambda be positive integers satisfying lambda >= 2, and denote K= Fp(m) [x]/ < f (x)(lambda pk)>, where f (x) is an irreducible polynomial in F-pm [a]. In this note, for any fixed invertible element omega is an element of K-x, we present all distinct linear codes S over K of length 2 satisfying the condition: (omega f (x)p(k) a(1), a(0)) is an element of S for all (a(0), a(1)) is an element of S. This conclusion can be used to determine the structure of (delta + alpha u(2))-constacyclic codes over the finite chain ring F-pm [u]/< u(2 lambda)> of length np(k) for any positive integer n satisfying gcd(p, n) = 1.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] On the Density of Codes over Finite Chain Rings
    Horlemann, Anna-Lena
    Weger, Violetta
    Willenborg, Nadja
    2023 IEEE INFORMATION THEORY WORKSHOP, ITW, 2023, : 1 - 6
  • [22] LCD codes over finite chain rings
    Liu, Xiusheng
    Liu, Hualu
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 34 : 1 - 19
  • [23] On constacyclic codes over finite chain rings
    Cao, Yonglin
    FINITE FIELDS AND THEIR APPLICATIONS, 2013, 24 : 124 - 135
  • [24] σ-LCD codes over finite chain rings
    Liu, Xiusheng
    Liu, Hualu
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (04) : 727 - 746
  • [25] Multivariable codes over finite chain rings:: Serial codes
    Martinez-Moro, E.
    Rua, I. F.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2006, 20 (04) : 947 - 959
  • [26] γ-Dual Codes over Finite Commutative Chain Rings
    Dinh, Hai Q.
    Thi, Hiep L.
    Tansuchat, Roengchai
    AXIOMS, 2024, 13 (10)
  • [28] Left dihedral codes over finite chain rings
    Aghili, H.
    Sobhani, R.
    DISCRETE MATHEMATICS, 2022, 345 (04)
  • [29] LCP of constacyclic codes over finite chain rings
    Ridhima Thakral
    Sucheta Dutt
    Ranjeet Sehmi
    Journal of Applied Mathematics and Computing, 2023, 69 : 1989 - 2001
  • [30] Critical Problem for codes over finite chain rings
    Imamura, Koji
    Shiromoto, Keisuke
    Finite Fields and their Applications, 2021, 76