A class of linear codes of length 2 over finite chain rings

被引:18
|
作者
Cao, Yonglin [1 ]
Cao, Yuan [1 ,2 ]
Dinh, Hai Q. [3 ,4 ]
Fu, Fang-Wei [5 ,6 ]
Gao, Jian [1 ]
Sriboonchitta, Songsak [7 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255091, Shandong, Peoples R China
[2] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Hunan, Peoples R China
[3] Ton Duc Thang Univ, Div Computat Math & Engn, Inst Computat Sci, Ho Chi Minh City, Vietnam
[4] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[5] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[6] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[7] Chiang Mai Univ, Fac Econ, Chiang Mai 52000, Thailand
基金
中国国家自然科学基金;
关键词
Linear codes; constacyclic codes; generator matrix; finite chain rings; PLUS ALPHA-U(2))-CONSTACYCLIC CODES; ROOT CONSTACYCLIC CODES; COMPLETE CLASSIFICATION; NEGACYCLIC CODES; CYCLIC CODES;
D O I
10.1142/S0219498820501030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F-pm be a finite field of cardinality p(m), where p is an odd prime, k, lambda be positive integers satisfying lambda >= 2, and denote K= Fp(m) [x]/ < f (x)(lambda pk)>, where f (x) is an irreducible polynomial in F-pm [a]. In this note, for any fixed invertible element omega is an element of K-x, we present all distinct linear codes S over K of length 2 satisfying the condition: (omega f (x)p(k) a(1), a(0)) is an element of S for all (a(0), a(1)) is an element of S. This conclusion can be used to determine the structure of (delta + alpha u(2))-constacyclic codes over the finite chain ring F-pm [u]/< u(2 lambda)> of length np(k) for any positive integer n satisfying gcd(p, n) = 1.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Cyclic and negacyclic codes over finite chain rings
    Dinh, HQ
    López-Permouth, SR
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1728 - 1744
  • [32] Contraction of cyclic codes over finite chain rings
    Tabue, Alexandre Fotue
    Mouaha, Christophe
    DISCRETE MATHEMATICS, 2018, 341 (06) : 1722 - 1731
  • [33] MACWILLIAMS IDENTITY FOR LINEAR CODES OVER FINITE CHAIN RINGS WITH RESPECT TO HOMOGENEOUS WEIGHT
    Moeini, Mina
    Rezaei, Rashid
    Samei, Karim
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (05) : 1163 - 1173
  • [34] Gilbert-Varshamov type bounds for linear codes over finite chain rings
    Ozbudak, Ferruh
    Sole, Patrick
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2007, 1 (01) : 99 - 109
  • [35] On the lattice of cyclic codes over finite chain rings
    Fotue-Tabue, Alexandre
    Mouaha, Christophe
    ALGEBRA AND DISCRETE MATHEMATICS, 2019, 27 (02): : 252 - 268
  • [36] SOME CONSTACYCLIC CODES OVER FINITE CHAIN RINGS
    Batoul, Aicha
    Guenda, Kenza
    Gulliver, T. Aaron
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2016, 10 (04) : 683 - 694
  • [37] SKEW CONSTACYCLIC CODES OVER FINITE CHAIN RINGS
    Jitman, Somphong
    Ling, San
    Udomkavanich, Patanee
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2012, 6 (01) : 39 - 63
  • [38] Critical Problem for codes over finite chain rings
    Imamura, Koji
    Shiromoto, Keisuke
    Huffman, W. Cary
    FINITE FIELDS AND THEIR APPLICATIONS, 2021, 76
  • [39] LCP of constacyclic codes over finite chain rings
    Thakral, Ridhima
    Dutt, Sucheta
    Sehmi, Ranjeet
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (02) : 1989 - 2001
  • [40] The weight distribution of codes over finite chain rings
    Cavicchioni, Giulia
    Meneghetti, Alessio
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 675 : 90 - 105