A class of linear codes of length 2 over finite chain rings

被引:18
|
作者
Cao, Yonglin [1 ]
Cao, Yuan [1 ,2 ]
Dinh, Hai Q. [3 ,4 ]
Fu, Fang-Wei [5 ,6 ]
Gao, Jian [1 ]
Sriboonchitta, Songsak [7 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255091, Shandong, Peoples R China
[2] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Hunan, Peoples R China
[3] Ton Duc Thang Univ, Div Computat Math & Engn, Inst Computat Sci, Ho Chi Minh City, Vietnam
[4] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[5] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[6] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[7] Chiang Mai Univ, Fac Econ, Chiang Mai 52000, Thailand
基金
中国国家自然科学基金;
关键词
Linear codes; constacyclic codes; generator matrix; finite chain rings; PLUS ALPHA-U(2))-CONSTACYCLIC CODES; ROOT CONSTACYCLIC CODES; COMPLETE CLASSIFICATION; NEGACYCLIC CODES; CYCLIC CODES;
D O I
10.1142/S0219498820501030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F-pm be a finite field of cardinality p(m), where p is an odd prime, k, lambda be positive integers satisfying lambda >= 2, and denote K= Fp(m) [x]/ < f (x)(lambda pk)>, where f (x) is an irreducible polynomial in F-pm [a]. In this note, for any fixed invertible element omega is an element of K-x, we present all distinct linear codes S over K of length 2 satisfying the condition: (omega f (x)p(k) a(1), a(0)) is an element of S for all (a(0), a(1)) is an element of S. This conclusion can be used to determine the structure of (delta + alpha u(2))-constacyclic codes over the finite chain ring F-pm [u]/< u(2 lambda)> of length np(k) for any positive integer n satisfying gcd(p, n) = 1.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] On Isodual Cyclic Codes over Finite Chain Rings
    Batoul, Aicha
    Guenda, Kenza
    Gulliver, T. Aaron
    Aydin, Nuh
    CODES, CRYPTOLOGY AND INFORMATION SECURITY, C2SI 2017, 2017, 10194 : 176 - 194
  • [42] Constacyclic and cyclic codes over finite chain rings
    National Key Laboratory, ISN, Xidian University, Xi'an, 710071, China
    J. China Univ. Post Telecom., 2009, 3 (122-125):
  • [43] Lifted codes and lattices from codes over finite chain rings
    Bouzara, Reguia Lamia
    Guenda, Kenza
    Martinez-Moro, Edgar
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2022, 14 (05): : 1009 - 1020
  • [44] Lifted codes and lattices from codes over finite chain rings
    Reguia Lamia Bouzara
    Kenza Guenda
    Edgar Martínez-Moro
    Cryptography and Communications, 2022, 14 : 1009 - 1020
  • [45] Extension theorems for linear codes over finite rings
    Wood, JA
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, 1997, 1255 : 329 - 340
  • [46] On Linear Codes over Finite Singleton Local Rings
    Alabiad, Sami
    Alhomaidhi, Alhanouf Ali
    Alsarori, Nawal A.
    MATHEMATICS, 2024, 12 (07)
  • [47] CONVOLUTIONAL CODES OVER FINITE CHAIN RINGS, MDP CODES AND THEIR CHARACTERIZATION
    Alfarano, Gianira N.
    Gruica, Anina
    Lieb, Julia
    Rosenthal, Joachim
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2023, 17 (01) : 1 - 22
  • [48] DNA codes over finite local Frobenius non-chain rings of length 4
    Alvarez-Garcia, C.
    Castillo-Guillen, C. A.
    DISCRETE MATHEMATICS, 2021, 344 (07)
  • [49] Linear codes and cyclic codes over finite rings and their generalizations: a survey
    Suprijanto, Djoko
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2023, 11 (02) : 467 - 490
  • [50] Skew Constacyclic Codes over Finite Fields and Finite Chain Rings
    Dinh, Hai Q.
    Nguyen, Bac T.
    Sriboonchitta, Songsak
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016