hp-Discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems

被引:0
|
作者
Thirupathi Gudi
Neela Nataraj
Amiya K. Pani
机构
[1] Indian Institute of Technology Bombay,Industrial Mathematics Group, Department of Mathematics
来源
Numerische Mathematik | 2008年 / 109卷
关键词
65N12; 65N30; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we have analyzed a one parameter family of hp-discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\nabla \cdot {\rm a} (u, \nabla u) + f (u, \nabla u) = 0$$\end{document} with Dirichlet boundary conditions. These methods depend on the values of the parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta\in[-1,1]$$\end{document} , where θ =  + 1 corresponds to the nonsymmetric and θ = −1 corresponds to the symmetric interior penalty methods when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm a}(u,\nabla u)={\nabla}u$$\end{document} and f(u,∇u) = −f, that is, for the Poisson problem. The error estimate in the broken H1 norm, which is optimal in h (mesh size) and suboptimal in p (degree of approximation) is derived using piecewise polynomials of degree p ≥ 2, when the solution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in H^{5/2}(\Omega)$$\end{document} . In the case of linear elliptic problems also, this estimate is optimal in h and suboptimal in p. Further, optimal error estimate in the L2 norm when θ = −1 is derived. Numerical experiments are presented to illustrate the theoretical results.
引用
收藏
页码:233 / 268
页数:35
相关论文
共 50 条