Discontinuous Galerkin methods for fractional elliptic problems

被引:0
|
作者
Tarek Aboelenen
机构
[1] Qassim University,Department of Mathematics, College of Science and Arts, Unaizah
[2] Assiut University,Department of Mathematics
来源
关键词
Fractional elliptic problems; Discontinuous Galerkin methods; Continuity; Coercivity; Optimal convergence; 26A33; 35R11; 65M60; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to provide a mathematical framework for studying different versions of discontinuous Galerkin (DG) approaches for solving 2D Riemann–Liouville fractional elliptic problems on a finite domain. The boundedness and stability analysis of the primal bilinear form are provided. A priori error estimate under energy norm and optimal error estimate under L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document} norm are obtained for DG methods of the different formulations. Finally, the performed numerical examples confirm the optimal convergence order of the different formulations.
引用
收藏
相关论文
共 50 条
  • [1] Discontinuous Galerkin methods for fractional elliptic problems
    Aboelenen, Tarek
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02):
  • [2] Discontinuous Galerkin methods for elliptic problems
    Arnold, DN
    Brezzi, F
    Cockburn, B
    Marini, D
    DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 89 - 101
  • [3] An analysis of discontinuous Galerkin methods for elliptic problems
    Reinhold Schneider
    Yuesheng Xu
    Aihui Zhou
    Advances in Computational Mathematics, 2006, 25 : 259 - 286
  • [4] An analysis of discontinuous Galerkin methods for elliptic problems
    Schneider, Reinhold
    Xu, Yuesheng
    Zhou, Aihui
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 25 (1-3) : 259 - 286
  • [5] Local discontinuous Galerkin methods for elliptic problems
    Castillo, P
    Cockburn, B
    Perugia, I
    Schötzau, D
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2002, 18 (01): : 69 - 75
  • [6] ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC INTERFACE PROBLEMS
    Cangiani, Andrea
    Georgoulis, Emmanuil H.
    Sabawi, Younis A.
    MATHEMATICS OF COMPUTATION, 2018, 87 (314) : 2675 - 2707
  • [7] BDDC methods for discontinuous Galerkin discretization of elliptic problems
    Dryja, Maksymilian
    Galvis, Juan
    Sarkis, Marcus
    JOURNAL OF COMPLEXITY, 2007, 23 (4-6) : 715 - 739
  • [8] Unified analysis of discontinuous Galerkin methods for elliptic problems
    Arnold, DN
    Brezzi, F
    Cockburn, B
    Marini, LD
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) : 1749 - 1779
  • [9] Multiplicative Schwarz methods for discontinuous Galerkin approximations of elliptic problems
    Antonietti, Paola F.
    Ayuso, Blanca
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (03): : 443 - 469
  • [10] Superconvergence of Discontinuous Galerkin Methods for Elliptic Boundary Value Problems
    Limin Ma
    Journal of Scientific Computing, 2021, 88