Discontinuous Galerkin methods for fractional elliptic problems

被引:0
|
作者
Tarek Aboelenen
机构
[1] Qassim University,Department of Mathematics, College of Science and Arts, Unaizah
[2] Assiut University,Department of Mathematics
来源
关键词
Fractional elliptic problems; Discontinuous Galerkin methods; Continuity; Coercivity; Optimal convergence; 26A33; 35R11; 65M60; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to provide a mathematical framework for studying different versions of discontinuous Galerkin (DG) approaches for solving 2D Riemann–Liouville fractional elliptic problems on a finite domain. The boundedness and stability analysis of the primal bilinear form are provided. A priori error estimate under energy norm and optimal error estimate under L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document} norm are obtained for DG methods of the different formulations. Finally, the performed numerical examples confirm the optimal convergence order of the different formulations.
引用
收藏
相关论文
共 50 条