hp-Discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems

被引:0
|
作者
Thirupathi Gudi
Neela Nataraj
Amiya K. Pani
机构
[1] Indian Institute of Technology Bombay,Industrial Mathematics Group, Department of Mathematics
来源
Numerische Mathematik | 2008年 / 109卷
关键词
65N12; 65N30; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we have analyzed a one parameter family of hp-discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\nabla \cdot {\rm a} (u, \nabla u) + f (u, \nabla u) = 0$$\end{document} with Dirichlet boundary conditions. These methods depend on the values of the parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta\in[-1,1]$$\end{document} , where θ =  + 1 corresponds to the nonsymmetric and θ = −1 corresponds to the symmetric interior penalty methods when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm a}(u,\nabla u)={\nabla}u$$\end{document} and f(u,∇u) = −f, that is, for the Poisson problem. The error estimate in the broken H1 norm, which is optimal in h (mesh size) and suboptimal in p (degree of approximation) is derived using piecewise polynomials of degree p ≥ 2, when the solution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in H^{5/2}(\Omega)$$\end{document} . In the case of linear elliptic problems also, this estimate is optimal in h and suboptimal in p. Further, optimal error estimate in the L2 norm when θ = −1 is derived. Numerical experiments are presented to illustrate the theoretical results.
引用
收藏
页码:233 / 268
页数:35
相关论文
共 50 条
  • [21] A posteriori error bounds for fully-discrete hp-discontinuous Galerkin timestepping methods for parabolic problems
    Georgoulis, Emmanuil H.
    Lakkis, Omar
    Wihler, Thomas P.
    NUMERISCHE MATHEMATIK, 2021, 148 (02) : 363 - 386
  • [22] A posteriori error bounds for fully-discrete hp-discontinuous Galerkin timestepping methods for parabolic problems
    Emmanuil H. Georgoulis
    Omar Lakkis
    Thomas P. Wihler
    Numerische Mathematik, 2021, 148 : 363 - 386
  • [23] An hp-local discontinuous Galerkin method for some quasilinear elliptic boundary value problems of nonmonotone type
    Gudi, Thirupathi
    Nataraj, Neela
    Pani, Amiya K.
    MATHEMATICS OF COMPUTATION, 2008, 77 (262) : 731 - 756
  • [24] A Class of Domain Decomposition Preconditioners for hp-Discontinuous Galerkin Finite Element Methods
    Antonietti, Paola F.
    Houston, Paul
    JOURNAL OF SCIENTIFIC COMPUTING, 2011, 46 (01) : 124 - 149
  • [25] A Posteriori Error Analysis for Implicit–Explicit hp-Discontinuous Galerkin Timestepping Methods for Semilinear Parabolic Problems
    Andrea Cangiani
    Emmanuil H. Georgoulis
    Mohammad Sabawi
    Journal of Scientific Computing, 2020, 82
  • [26] hp-Discontinuous Galerkin Finite Element Methods with Least-Squares Stabilization
    Houston, Paul
    Jensen, Max
    Sueli, Endre
    JOURNAL OF SCIENTIFIC COMPUTING, 2002, 17 (1-4) : 3 - 25
  • [27] Mixed hp-discontinuous Galerkin finite element methods for the stokes problem in polygons
    Houston, P
    Schötzau, D
    Wihler, TP
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 493 - 501
  • [28] hp-DISCONTINUOUS GALERKIN METHODS FOR THE LOTKA-MCKENDRICK EQUATION: A NUMERICAL STUDY
    Jeong, Shin-Ja
    Kim, Mi-Young
    Selenge, Tsendanysh
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 22 (04): : 623 - 640
  • [29] hp-Discontinuous Galerkin Finite Element Methods with Least-Squares Stabilization
    Paul Houston
    Max Jensen
    Endre Süli
    Journal of Scientific Computing, 2002, 17 : 3 - 25
  • [30] A Class of Domain Decomposition Preconditioners for hp-Discontinuous Galerkin Finite Element Methods
    Paola F. Antonietti
    Paul Houston
    Journal of Scientific Computing, 2011, 46 : 124 - 149