Estimation of spatio-temporal extreme distribution using a quantile factor model

被引:0
|
作者
Joonpyo Kim
Seoncheol Park
Junhyeon Kwon
Yaeji Lim
Hee-Seok Oh
机构
[1] Seoul National University,Pacific Climate Impacts Consortium
[2] University of Victoria,undefined
[3] Chung-Ang University,undefined
来源
Extremes | 2021年 / 24卷
关键词
Extremes; Extreme distribution; Factor model; Quantile; Spatio-temporal data; 62H25; 62G08; 62P12; 62G32;
D O I
暂无
中图分类号
学科分类号
摘要
This paper describes the estimation of the extreme spatio-temporal sea surface temperature data based on the quantile factor model implemented by the SNU multiscale team. The proposed method was developed for the EVA2019 Data Challenge. Various attempts have been conducted to use factor models in spatio-temporal data analysis to find hidden factors in high-dimensional data. Factor models represent high-dimensional data as a linear combination of several factors, and hence, can describe spatially and temporally correlated data in a simple form. Meanwhile, unlike ordinary factor models, there are asymmetric norm-based factor models, such as quantile factor models or expectile dynamic semiparametric factor models, that can help understand the quantitative behavior of data beyond their mean structure. For this purpose, we apply a quantile factor model to the data to obtain significant factors explaining the quantile response of the temperatures and find quantile estimates. We develop a new method for inference of quantiles of extremal levels by extrapolating quantile estimates from the factor model with extreme value theory. The proposed method provides better performance than the benchmark, gives some interpretable insights, and shows the potential to expand the factor model with various data.
引用
收藏
页码:177 / 195
页数:18
相关论文
共 50 条
  • [31] Spatio-temporal distribution of intensity and frequency of extreme temperature events over Nigeria
    Ogolo, Emmanuel O.
    Ojo, Olusola S.
    Olabisi, Israel O.
    THEORETICAL AND APPLIED CLIMATOLOGY, 2024, 155 (12) : 9961 - 9980
  • [32] EXTREME DATA ANALYSIS USING SPATIO-TEMPORAL BAYES REGRESSION WITH INLA IN STATISTICAL DOWNSCALING MODEL
    Djuraidah, Anik
    Rachmawati, Ro'fah Nur
    Wigena, Aji Hamim
    Mangku, I. Wayan
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2021, 17 (01): : 259 - 273
  • [33] Spatio-temporal approach for noise estimation
    Zlokolica, V.
    Pizurica, A.
    Vansteenkiste, E.
    Philips, W.
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 1393 - 1396
  • [34] SPATIO-TEMPORAL ESTIMATION OF WILDFIRE GROWTH
    Sharma, Balaji R.
    Kumar, Manish
    Cohen, Kelly
    ASME 2013 DYNAMIC SYSTEMS AND CONTROL CONFERENCE, VOL 2, 2013,
  • [35] Estimation of Clinical Tremor using Spatio-Temporal Adversarial AutoEncoder
    Zhang, Li
    Koesmahargyo, Vidya
    Galatzer-Levy, Isaac
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 8259 - 8266
  • [36] Spatio-temporal photon density estimation using bilateral filtering
    Weber, M
    Milch, M
    Myszkowski, K
    Dmitriev, K
    Rokita, P
    Seidel, HP
    COMPUTER GRAPHICS INTERNATIONAL, PROCEEDINGS, 2004, : 120 - 127
  • [37] Bioelectric sources estimation using spatio-temporal matching pursuit
    Ben-Gurion University of the Negev, Israel
    不详
    Appl Sign Process, 3 (195-208):
  • [38] Estimation of Housing Price Variations Using Spatio-Temporal Data
    Chica-Olmo, Jorge
    Cano-Guervos, Rafael
    Chica-Rivas, Mario
    SUSTAINABILITY, 2019, 11 (06)
  • [39] Analyzing ozone concentration by Bayesian spatio-temporal quantile regression
    Das, P.
    Ghosal, S.
    ENVIRONMETRICS, 2017, 28 (04)
  • [40] A flexible spatio-temporal model for air pollution with spatial and spatio-temporal covariates
    Lindstrom, Johan
    Szpiro, Adam A.
    Sampson, Paul D.
    Oron, Assaf P.
    Richards, Mark
    Larson, Tim V.
    Sheppard, Lianne
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2014, 21 (03) : 411 - 433