Estimation of spatio-temporal extreme distribution using a quantile factor model

被引:0
|
作者
Joonpyo Kim
Seoncheol Park
Junhyeon Kwon
Yaeji Lim
Hee-Seok Oh
机构
[1] Seoul National University,Pacific Climate Impacts Consortium
[2] University of Victoria,undefined
[3] Chung-Ang University,undefined
来源
Extremes | 2021年 / 24卷
关键词
Extremes; Extreme distribution; Factor model; Quantile; Spatio-temporal data; 62H25; 62G08; 62P12; 62G32;
D O I
暂无
中图分类号
学科分类号
摘要
This paper describes the estimation of the extreme spatio-temporal sea surface temperature data based on the quantile factor model implemented by the SNU multiscale team. The proposed method was developed for the EVA2019 Data Challenge. Various attempts have been conducted to use factor models in spatio-temporal data analysis to find hidden factors in high-dimensional data. Factor models represent high-dimensional data as a linear combination of several factors, and hence, can describe spatially and temporally correlated data in a simple form. Meanwhile, unlike ordinary factor models, there are asymmetric norm-based factor models, such as quantile factor models or expectile dynamic semiparametric factor models, that can help understand the quantitative behavior of data beyond their mean structure. For this purpose, we apply a quantile factor model to the data to obtain significant factors explaining the quantile response of the temperatures and find quantile estimates. We develop a new method for inference of quantiles of extremal levels by extrapolating quantile estimates from the factor model with extreme value theory. The proposed method provides better performance than the benchmark, gives some interpretable insights, and shows the potential to expand the factor model with various data.
引用
收藏
页码:177 / 195
页数:18
相关论文
共 50 条
  • [11] SPATIO-TEMPORAL MODELLING OF EXTREME STORMS
    Economou, Theodoros
    Stephenson, David B.
    Ferro, Christopher A. T.
    ANNALS OF APPLIED STATISTICS, 2014, 8 (04): : 2223 - 2246
  • [12] Estimation of Extreme Rainfall Patterns Using Generalized Linear Mixed Model for Spatio-temporal data in West Java, Indonesia
    Rachmawati, Ro'Fah Nur
    Procedia Computer Science, 2021, 179 : 330 - 336
  • [13] Research progress on spatio-temporal distribution estimation of urban population
    Wu H.
    Hu Q.
    Li R.
    Liu Z.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (09): : 1827 - 1847
  • [14] Modeling Spatio-Temporal Extreme Events Using Graphical Models
    Yu, Hang
    Dauwels, Justin
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (05) : 1101 - 1116
  • [15] Deep Latent Factor Model for Spatio-Temporal Forecasting
    Koo, Wonmo
    Ma, Eun-Yeol
    Kim, Heeyoung
    TECHNOMETRICS, 2024, 66 (03) : 470 - 482
  • [16] Fast Motion Estimation using spatio-temporal correlations
    Yoon, Hyo Sun
    Yoo, Jae Myeong
    Dinh, Toan Nguyen
    Son, Hwa Jeong
    Park, Mi Seen
    Lee, Guee Sang
    ADVANCES IN ARTIFICIAL REALITY AND TELE-EXISTENCE, PROCEEDINGS, 2006, 4282 : 548 - +
  • [17] Vehicle Trajectory Estimation Using Spatio-Temporal MCMC
    Yann Goyat
    Thierry Chateau
    Francois Bardet
    EURASIP Journal on Advances in Signal Processing, 2010
  • [18] Motion estimation using spatio-temporal contextual information
    Namuduri, KR
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2004, 14 (08) : 1111 - 1115
  • [19] Vehicle Trajectory Estimation Using Spatio-Temporal MCMC
    Goyat, Yann
    Chateau, Thierry
    Bardet, Francois
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2010,
  • [20] Spatio-temporal Prediction of Air Quality Using Spatio-temporal Clustering and Hierarchical Bayesian Model
    Wang, Feiyun
    Hu, Yao
    Qin, Yutao
    CHIANG MAI JOURNAL OF SCIENCE, 2024, 51 (05):