Estimation of spatio-temporal extreme distribution using a quantile factor model

被引:0
|
作者
Joonpyo Kim
Seoncheol Park
Junhyeon Kwon
Yaeji Lim
Hee-Seok Oh
机构
[1] Seoul National University,Pacific Climate Impacts Consortium
[2] University of Victoria,undefined
[3] Chung-Ang University,undefined
来源
Extremes | 2021年 / 24卷
关键词
Extremes; Extreme distribution; Factor model; Quantile; Spatio-temporal data; 62H25; 62G08; 62P12; 62G32;
D O I
暂无
中图分类号
学科分类号
摘要
This paper describes the estimation of the extreme spatio-temporal sea surface temperature data based on the quantile factor model implemented by the SNU multiscale team. The proposed method was developed for the EVA2019 Data Challenge. Various attempts have been conducted to use factor models in spatio-temporal data analysis to find hidden factors in high-dimensional data. Factor models represent high-dimensional data as a linear combination of several factors, and hence, can describe spatially and temporally correlated data in a simple form. Meanwhile, unlike ordinary factor models, there are asymmetric norm-based factor models, such as quantile factor models or expectile dynamic semiparametric factor models, that can help understand the quantitative behavior of data beyond their mean structure. For this purpose, we apply a quantile factor model to the data to obtain significant factors explaining the quantile response of the temperatures and find quantile estimates. We develop a new method for inference of quantiles of extremal levels by extrapolating quantile estimates from the factor model with extreme value theory. The proposed method provides better performance than the benchmark, gives some interpretable insights, and shows the potential to expand the factor model with various data.
引用
收藏
页码:177 / 195
页数:18
相关论文
共 50 条
  • [21] Spatio-temporal motion estimation using the Wigner-Ville distribution and the Hough transform
    Carranza-Herrezuelo, N.
    Gil-Rodrigo, E.
    Cristobal, G.
    Ledesma-Carbayoo, M. J.
    Santos, A.
    PERCEPTION, 2007, 36 : 214 - 214
  • [22] Estimation of Extreme Rainfall Patterns Using Generalized Linear Mixed Model for Spatio-temporal data in West Java']Java, Indonesia
    Rachmawati, Ro'fah Nur
    5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL INTELLIGENCE 2020, 2021, 179 : 330 - 336
  • [23] A Bayesian hierarchical spatio-temporal model for summer extreme temperatures in Spain
    Garcia, Jose Agustin
    Acero, Francisco Javier
    Martinez-Pizarro, Mario
    Lara, Manuel
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2024, 38 (09) : 3393 - 3410
  • [24] A Bayesian hierarchical spatio-temporal model for extreme rainfall in Extremadura (Spain)
    Garcia, J. A.
    Martin, J.
    Naranjo, L.
    Acero, F. J.
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2018, 63 (06): : 878 - 894
  • [25] Spatio-temporal modelling and uncertainty estimation of hourly global solar irradiance using Extreme Learning Machines
    Walch, Alina
    Castello, Roberto
    Mohajeri, Nahid
    Guignard, Fabian
    Kanevski, Mikhail
    Scartezzini, Jean-Louis
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 6378 - 6383
  • [26] Estimation and Model Selection for an IDE-Based Spatio-Temporal Model
    Scerri, Kenneth
    Dewar, Michael
    Kadirkamanathan, Visakan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (02) : 482 - 492
  • [27] Spatio-temporal variability of extreme precipitation in Nepal
    Talchabhadel, Rocky
    Karki, Ramchandra
    Thapa, Bhesh Raj
    Maharjan, Manisha
    Parajuli, Binod
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2018, 38 (11) : 4296 - 4313
  • [28] Spatio-temporal Graphical Models for Extreme Events
    Yu, Hang
    Zhang, Liaofan
    Dauwels, Justin
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 2032 - 2036
  • [29] Robust estimation of a dynamic spatio-temporal model with structural change
    Villejo, Stephen Jun V.
    Barrios, Erniel B.
    Lansangan, Joseph Ryan G.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (03) : 505 - 518
  • [30] A Spatio-Temporal Model for Estimation and Efficient Tracking of Dynamic Boundaries
    Nagarathna
    Valli, S.
    Manjunath, D.
    2014 TWENTIETH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2014,