Bezout Rings, Polynomials, and Distributivity

被引:0
|
作者
A. A. Tuganbaev
机构
[1] Moscow Power Engineering Institute,
来源
Mathematical Notes | 2001年 / 70卷
关键词
skew polynomial ring; Bezout ring; distributive ring;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a ring, ϕ be an injective endomorphism of A, and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$A_r \left[ {x,\varphi } \right] \equiv R$$ \end{document} be the right skew polynomial ring. If all right annihilator ideals of A are ideals, then R is a right Bezout ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow A$$ \end{document} is a right Rickartian right Bezout ring, ϕ(e)=e for every central idempotent e∈A, and the element ϕ(a) is invertible in A for every regular a∈A. If A is strongly regular and n≥ 2, then R/xnR is a right Bezout ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow $$ \end{document}R/xnR is a right distributive ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow $$ \end{document}R/xnR is a right invariant ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow $$ \end{document} ϕ(e)=e for every central idempotent e∈A. The ring R/x2R is right distributive \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow $$ \end{document}R/xnR is right distributive for every positive integer n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow $$ \end{document}A is right or left Rickartian and right distributive, ϕ(e)=e for every central idempotent e∈A and the ϕ(a) is invertible in A for every regular a∈A. If A is a ring which is a finitely generated module over its center, then A[x] is a right Bezout ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow $$ \end{document}A[x]/x2A[x] is a right Bezout ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow $$ \end{document}A is a regular ring.
引用
收藏
页码:242 / 257
页数:15
相关论文
共 50 条
  • [21] SEMIPERFECT IPRI-RINGS AND RIGHT BEZOUT RINGS
    Dokuchaev, M. A.
    Gubareni, N. M.
    Kirichenko, V. V.
    UKRAINIAN MATHEMATICAL JOURNAL, 2010, 62 (05) : 701 - 715
  • [22] BEZOUT AND PRUFER F-RINGS
    MARTINEZ, J
    WOODWARD, S
    COMMUNICATIONS IN ALGEBRA, 1992, 20 (10) : 2975 - 2989
  • [23] ON ALMOST VALUATION AND ALMOST BEZOUT RINGS
    Mahdou, Najib
    Mimouni, Abdeslam
    Moutui, Moutu Abdou Salam
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (01) : 297 - 308
  • [24] Bezout Rings of Stable Range 1.5
    Shchedryk, V. P.
    UKRAINIAN MATHEMATICAL JOURNAL, 2015, 67 (06) : 960 - 974
  • [25] On the structure of distributive and Bezout rings with waists
    Ferrero, M
    Mazurek, R
    FORUM MATHEMATICUM, 2005, 17 (02) : 191 - 198
  • [26] Bezout Rings of Stable Range 1.5
    V. P. Shchedryk
    Ukrainian Mathematical Journal, 2015, 67 : 960 - 974
  • [27] MODULES OVER SEMIHEREDITARY BEZOUT RINGS
    SHORES, TS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 46 (02) : 211 - 213
  • [28] Bezout and semihereditary power series rings
    Herbera, D
    JOURNAL OF ALGEBRA, 2003, 270 (01) : 150 - 168
  • [29] Hypernear-Rings with a Defect of Distributivity
    Jancic-Rasovic, Sanja
    Cristea, Irina
    FILOMAT, 2018, 32 (04) : 1133 - 1149
  • [30] On the Semiring of Skew Polynomials over a Bezout Semiring
    M. V. Babenko
    V. V. Chermnykh
    Mathematical Notes, 2022, 111 : 331 - 342