BEZOUT AND PRUFER F-RINGS

被引:27
|
作者
MARTINEZ, J
WOODWARD, S
机构
[1] Department of Mathematics, University of Florida, Gainesville, FL
关键词
D O I
10.1080/00927879208824500
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article describes Bezout and Prufer f-rings in terms of their localizations. All f-rings here are commutative, semiprime and possess an identity; they also have the bounded inversion property: a > 1 implies that a is a multiplicative unit. The two main theorems are as follows: (1) A is a Bezout f-ring if and only if each localization at a maximal ideal is a (totally ordered) valuation ring; (2) Each Prufer f-ring is quasi-Bezout, and if each localization of A is a Prufer f-ring then so is A. We give a counter-example to show that the converse of the last assertion is false.
引用
收藏
页码:2975 / 2989
页数:15
相关论文
共 50 条
  • [1] On φ-Prufer rings and φ-Bezout rings
    Anderson, DF
    Badawi, A
    HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (02): : 331 - 343
  • [2] Generalizations of Prufer rings and Bezout rings
    Kim, Hwankoo
    Mahdou, Najib
    Oubouhou, El Houssaine
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (01): : 126 - 141
  • [3] ON φ-ALMOST BEZOUT RINGS AND φ-ALMOST PRUFER RINGS
    Rahmatinia, Mahdi
    HOUSTON JOURNAL OF MATHEMATICS, 2017, 43 (03): : 713 - 723
  • [4] F-RINGS
    TAFT, MW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (05): : A628 - &
  • [5] QUOTIENT RINGS OF F-RINGS
    STEINBER.SA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (02): : A297 - A297
  • [6] REPRESENTATION OF F-RINGS
    DAUNS, J
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 74 (02) : 249 - &
  • [7] CHARACTERIZING F-RINGS
    COLVILLE, PD
    GLASGOW MATHEMATICAL JOURNAL, 1975, 16 (SEP) : 88 - 90
  • [8] Orderpotent f-rings
    Duval, AM
    Wojciechowski, PJ
    ALGEBRA UNIVERSALIS, 1995, 34 (04) : 510 - 526
  • [9] EPIMORPHISMS OF F-RINGS
    SCHWARTZ, N
    ORDERED ALGEBRAIC STRUCTURES, 1989, 55 : 187 - 195
  • [10] Commutative singular f-rings
    Finn, RT
    Martinez, J
    McGovern, WW
    ORDERED ALGEBRAIC STRUCTURES, 1997, : 149 - 166