ON φ-ALMOST BEZOUT RINGS AND φ-ALMOST PRUFER RINGS

被引:0
|
作者
Rahmatinia, Mahdi [1 ]
机构
[1] Univ Mohaghegh Ardabili, Dept Math & Applicat, POB 179, Ardebil, Iran
来源
HOUSTON JOURNAL OF MATHEMATICS | 2017年 / 43卷 / 03期
关键词
PSEUDO-VALUATION RINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to introduce some new classes of rings that are closely related to the classes of almost Bezout domains and almost Prufer domains. Suppose that H = {R vertical bar R is a commutative ring with 1 not equal 0 and Nil(R) is a divided prime ideal of R}. Let R is an element of T(R) be the total qoutient ring of R, and set phi : T(R) -> R-Nil(R) such that phi(a/b) = a/b for every a is an element of R and b is an element of R \ Z(R). Then phi is a ring homomorphism from T(R) into R-Nil(R) and phi resticted to R is also a ring homomorphism from R into R-Nil(R) given by phi(x) = x/1 for every x is an element of R. An ideal I of R is phi-invertible if phi(I) is invertible ideal of phi(R). A ring R is a phi-almost Bezout ring (phi-AB ring) (respectively, phi-almost Prufer ring (phi-AP ring)) if for nonnil elements a, b of R, There exists an n = n(a, b) with (a(n), b(n)) is a nonnil principal (respectively, phi-invertible) ideal of R. This paper is devoted to study the phi-AB rings and phi-AP rings.
引用
收藏
页码:713 / 723
页数:11
相关论文
共 50 条
  • [1] Almost Bezout rings and almost GCD-rings
    El Khalfi, Abdelhaq
    Mahdou, Najib
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (06)
  • [2] ON ALMOST VALUATION AND ALMOST BEZOUT RINGS
    Mahdou, Najib
    Mimouni, Abdeslam
    Moutui, Moutu Abdou Salam
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (01) : 297 - 308
  • [3] On φ-Prufer rings and φ-Bezout rings
    Anderson, DF
    Badawi, A
    HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (02): : 331 - 343
  • [4] Generalizations of Prufer rings and Bezout rings
    Kim, Hwankoo
    Mahdou, Najib
    Oubouhou, El Houssaine
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (01): : 126 - 141
  • [5] Bezout rings with almost stable range 1
    McGovern, Warren Wrn.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (02) : 340 - 348
  • [6] BEZOUT AND PRUFER F-RINGS
    MARTINEZ, J
    WOODWARD, S
    COMMUNICATIONS IN ALGEBRA, 1992, 20 (10) : 2975 - 2989
  • [7] ALMOST QF RINGS AND ALMOST QF RINGS
    HARADA, M
    OSAKA JOURNAL OF MATHEMATICS, 1993, 30 (04) : 887 - 892
  • [8] Semigroup rings as almost Prufer v-multiplication domains
    Lim, Jung Wook
    Oh, Dong Yeol
    SEMIGROUP FORUM, 2018, 97 (01) : 53 - 63
  • [9] NUMERICAL SEMIGROUP RINGS AND ALMOST PRUFER V-MULTIPLICATION DOMAINS
    Chang, Gyu Whan
    Kim, Hwankoo
    Lim, Jung Wook
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (07) : 2385 - 2399
  • [10] Almost slender rings and compact rings
    Jensen, Christian U.
    Jondrup, Soren
    Thorup, Anders
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (05) : 1869 - 1896