Bezout Rings, Polynomials, and Distributivity

被引:0
|
作者
A. A. Tuganbaev
机构
[1] Moscow Power Engineering Institute,
来源
Mathematical Notes | 2001年 / 70卷
关键词
skew polynomial ring; Bezout ring; distributive ring;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a ring, ϕ be an injective endomorphism of A, and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$A_r \left[ {x,\varphi } \right] \equiv R$$ \end{document} be the right skew polynomial ring. If all right annihilator ideals of A are ideals, then R is a right Bezout ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow A$$ \end{document} is a right Rickartian right Bezout ring, ϕ(e)=e for every central idempotent e∈A, and the element ϕ(a) is invertible in A for every regular a∈A. If A is strongly regular and n≥ 2, then R/xnR is a right Bezout ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow $$ \end{document}R/xnR is a right distributive ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow $$ \end{document}R/xnR is a right invariant ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow $$ \end{document} ϕ(e)=e for every central idempotent e∈A. The ring R/x2R is right distributive \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow $$ \end{document}R/xnR is right distributive for every positive integer n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow $$ \end{document}A is right or left Rickartian and right distributive, ϕ(e)=e for every central idempotent e∈A and the ϕ(a) is invertible in A for every regular a∈A. If A is a ring which is a finitely generated module over its center, then A[x] is a right Bezout ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow $$ \end{document}A[x]/x2A[x] is a right Bezout ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow $$ \end{document}A is a regular ring.
引用
收藏
页码:242 / 257
页数:15
相关论文
共 50 条
  • [31] On the Semiring of Skew Polynomials over a Bezout Semiring
    Babenko, M., V
    Chermnykh, V. V.
    MATHEMATICAL NOTES, 2022, 111 (3-4) : 331 - 342
  • [32] Bezout rings with almost stable range 1
    McGovern, Warren Wrn.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (02) : 340 - 348
  • [33] FINITELY GENERATED MODULES OVER BEZOUT RINGS
    WIEGAND, RA
    WIEGAND, SM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A62 - A62
  • [34] Distributive Rings, Uniserial Rings of Fractions, and Endo-Bezout Modules
    A. A. Tuganbaev
    Journal of Mathematical Sciences, 2003, 114 (2) : 1185 - 1203
  • [35] Comparability, Distributivity and Non-commutative φ-rings
    Lomp, Christian
    Sant'Ana, Alveri
    GROUPS, RINGS AND GROUP RINGS, 2009, 499 : 205 - +
  • [36] On minimal prime ideals of commutative Bezout rings
    B. V. Zabavskii
    A. I. Gatalevich
    Ukrainian Mathematical Journal, 1999, 51 (7) : 1129 - 1134
  • [37] DIVISIBILITY THEORY IN COMMUTATIVE RINGS: BEZOUT MONOIDS
    Anh, P. N.
    Marki, L.
    Vamos, P.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (08) : 3967 - 3992
  • [38] Divisibility theory in commutative rings: Bezout monoids
    Ánh P.N.
    Márki L.
    Vámos P.
    Journal of Mathematical Sciences, 2012, 186 (5) : 694 - 700
  • [39] On Bezout and distributive generalized power series rings
    Mazurek, R.
    Ziembowski, M.
    JOURNAL OF ALGEBRA, 2006, 306 (02) : 397 - 411
  • [40] A Note on Near-Rings and Hypernear-Rings with a Defect of Distributivity
    Jancic-Rasovic, Sanja
    Cristea, Irina
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978