Bezout Rings, Polynomials, and Distributivity

被引:0
|
作者
A. A. Tuganbaev
机构
[1] Moscow Power Engineering Institute,
来源
Mathematical Notes | 2001年 / 70卷
关键词
skew polynomial ring; Bezout ring; distributive ring;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a ring, ϕ be an injective endomorphism of A, and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$A_r \left[ {x,\varphi } \right] \equiv R$$ \end{document} be the right skew polynomial ring. If all right annihilator ideals of A are ideals, then R is a right Bezout ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow A$$ \end{document} is a right Rickartian right Bezout ring, ϕ(e)=e for every central idempotent e∈A, and the element ϕ(a) is invertible in A for every regular a∈A. If A is strongly regular and n≥ 2, then R/xnR is a right Bezout ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow $$ \end{document}R/xnR is a right distributive ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow $$ \end{document}R/xnR is a right invariant ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow $$ \end{document} ϕ(e)=e for every central idempotent e∈A. The ring R/x2R is right distributive \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow $$ \end{document}R/xnR is right distributive for every positive integer n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow $$ \end{document}A is right or left Rickartian and right distributive, ϕ(e)=e for every central idempotent e∈A and the ϕ(a) is invertible in A for every regular a∈A. If A is a ring which is a finitely generated module over its center, then A[x] is a right Bezout ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow $$ \end{document}A[x]/x2A[x] is a right Bezout ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \Leftrightarrow $$ \end{document}A is a regular ring.
引用
收藏
页码:242 / 257
页数:15
相关论文
共 50 条
  • [1] Bezout rings, polynomials, and distributivity
    Tuganbaev, AA
    MATHEMATICAL NOTES, 2001, 70 (1-2) : 242 - 257
  • [2] Bezout rings and skew polynomials
    Tuganbaev, AA
    RUSSIAN MATHEMATICAL SURVEYS, 2001, 56 (05) : 988 - 989
  • [3] On φ-Prufer rings and φ-Bezout rings
    Anderson, DF
    Badawi, A
    HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (02): : 331 - 343
  • [4] Bezout modules and rings
    Tuganbaev A.A.
    Journal of Mathematical Sciences, 2009, 163 (5) : 596 - 597
  • [5] BEZOUT RINGS AND THEIR SUBRINGS
    COHN, PM
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1968, 64 : 251 - &
  • [6] RINGS OF ENDOMORPHISMS AND DISTRIBUTIVITY
    TUGANBAEV, AA
    MATHEMATICAL NOTES, 1994, 56 (3-4) : 1089 - 1096
  • [7] Generalizations of Prufer rings and Bezout rings
    Kim, Hwankoo
    Mahdou, Najib
    Oubouhou, El Houssaine
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (01): : 126 - 141
  • [8] Bezout domains and skew polynomials
    Tuganbaev, AA
    RUSSIAN MATHEMATICAL SURVEYS, 2000, 55 (05) : 1005 - 1006
  • [9] ORTHOGONAL POLYNOMIALS AND THE BEZOUT IDENTITY
    Ronveaux, A.
    Zarzo, A.
    Area, I.
    Godoy, E.
    DIFFERENCE EQUATIONS, SPECIAL FUNCTIONS AND ORTHOGONAL POLYNOMIALS, 2007, : 566 - +
  • [10] ON φ-ALMOST BEZOUT RINGS AND φ-ALMOST PRUFER RINGS
    Rahmatinia, Mahdi
    HOUSTON JOURNAL OF MATHEMATICS, 2017, 43 (03): : 713 - 723