Binomial edge ideals and bounds for their regularity

被引:0
|
作者
Arvind kumar
机构
[1] Indian Institute of Technology Madras,Department of Mathematics
来源
关键词
Binomial edge ideal; Castelnuovo–Mumford regularity; Chordal graph; Quasi-block graph; Semi-block graph; H-polynomial; 13D02; 05E40;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simple graph on n vertices and JG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_G$$\end{document} denote the corresponding binomial edge ideal in S=K[x1,…,xn,y1,…,yn].\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S = K[x_1, \ldots , x_n, y_1, \ldots , y_n].$$\end{document} We prove that the Castelnuovo–Mumford regularity of JG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_G$$\end{document} is bounded above by c(G)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(G)+1$$\end{document}, when G is a quasi-block graph or semi-block graph. We give another proof of Saeedi Madani–Kiani regularity upper bound conjecture for chordal graphs. We obtain the regularity of binomial edge ideals of Jahangir graphs. Later, we establish a sufficient condition for Hibi–Matsuda conjecture to be true.
引用
收藏
页码:729 / 742
页数:13
相关论文
共 50 条
  • [41] Parity binomial edge ideals
    Kahle, Thomas
    Sarmiento, Camilo
    Windisch, Tobias
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 44 (01) : 99 - 117
  • [42] Licci binomial edge ideals
    Ene, Viviana
    Rinaldo, Giancarlo
    Terai, Naoki
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 175
  • [43] Binomial Edge Ideals: A Survey
    Madani, Sara Saeedi
    MULTIGRADED ALGEBRA AND APPLICATIONS, 2018, 238 : 83 - 94
  • [44] Parity binomial edge ideals
    Thomas Kahle
    Camilo Sarmiento
    Tobias Windisch
    Journal of Algebraic Combinatorics, 2016, 44 : 99 - 117
  • [45] Regularity of powers of d-sequence (parity) binomial edge ideals of unicycle graphs
    Amalore Nambi, Marie
    Kumar, Neeraj
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (06) : 2598 - 2615
  • [46] On the Regularity and Defect Sequence of Monomial and Binomial Ideals
    Keivan Borna
    Abolfazl Mohajer
    Czechoslovak Mathematical Journal, 2019, 69 : 653 - 664
  • [47] On the Regularity and Defect Sequence of Monomial and Binomial Ideals
    Borna, Keivan
    Mohajer, Abolfazl
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (03) : 653 - 664
  • [48] The regularity of powers of edge ideals
    Arindam Banerjee
    Journal of Algebraic Combinatorics, 2015, 41 : 303 - 321
  • [49] The regularity of powers of edge ideals
    Banerjee, Arindam
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 41 (02) : 303 - 321
  • [50] The regularity of edge ideals of graphs
    Morales, Marcel
    Pour, Ali Akbar Yazdan
    Zaare-Nahandi, Rashid
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (12) : 2714 - 2719