Binomial edge ideals and bounds for their regularity

被引:0
|
作者
Arvind kumar
机构
[1] Indian Institute of Technology Madras,Department of Mathematics
来源
关键词
Binomial edge ideal; Castelnuovo–Mumford regularity; Chordal graph; Quasi-block graph; Semi-block graph; H-polynomial; 13D02; 05E40;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simple graph on n vertices and JG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_G$$\end{document} denote the corresponding binomial edge ideal in S=K[x1,…,xn,y1,…,yn].\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S = K[x_1, \ldots , x_n, y_1, \ldots , y_n].$$\end{document} We prove that the Castelnuovo–Mumford regularity of JG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_G$$\end{document} is bounded above by c(G)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(G)+1$$\end{document}, when G is a quasi-block graph or semi-block graph. We give another proof of Saeedi Madani–Kiani regularity upper bound conjecture for chordal graphs. We obtain the regularity of binomial edge ideals of Jahangir graphs. Later, we establish a sufficient condition for Hibi–Matsuda conjecture to be true.
引用
收藏
页码:729 / 742
页数:13
相关论文
共 50 条