Let G be a simple graph on n vertices and JG\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$J_G$$\end{document} denote the corresponding binomial edge ideal in S=K[x1,…,xn,y1,…,yn].\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S = K[x_1, \ldots , x_n, y_1, \ldots , y_n].$$\end{document} We prove that the Castelnuovo–Mumford regularity of JG\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$J_G$$\end{document} is bounded above by c(G)+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c(G)+1$$\end{document}, when G is a quasi-block graph or semi-block graph. We give another proof of Saeedi Madani–Kiani regularity upper bound conjecture for chordal graphs. We obtain the regularity of binomial edge ideals of Jahangir graphs. Later, we establish a sufficient condition for Hibi–Matsuda conjecture to be true.