Binomial edge ideals and bounds for their regularity

被引:0
|
作者
Arvind kumar
机构
[1] Indian Institute of Technology Madras,Department of Mathematics
来源
关键词
Binomial edge ideal; Castelnuovo–Mumford regularity; Chordal graph; Quasi-block graph; Semi-block graph; H-polynomial; 13D02; 05E40;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simple graph on n vertices and JG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_G$$\end{document} denote the corresponding binomial edge ideal in S=K[x1,…,xn,y1,…,yn].\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S = K[x_1, \ldots , x_n, y_1, \ldots , y_n].$$\end{document} We prove that the Castelnuovo–Mumford regularity of JG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_G$$\end{document} is bounded above by c(G)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(G)+1$$\end{document}, when G is a quasi-block graph or semi-block graph. We give another proof of Saeedi Madani–Kiani regularity upper bound conjecture for chordal graphs. We obtain the regularity of binomial edge ideals of Jahangir graphs. Later, we establish a sufficient condition for Hibi–Matsuda conjecture to be true.
引用
收藏
页码:729 / 742
页数:13
相关论文
共 50 条
  • [31] Upper bounds for the regularity of symbolic powers of certain classes of edge ideals
    Kumar, Arvind
    Selvaraja, S.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (01)
  • [32] SOME BOUNDS FOR THE REGULARITY OF THE EDGE IDEALS AND THEIR POWERS IN A CERTAIN CLASS OF GRAPHS
    Ashitha, Tom
    Asir, Thangaraj
    Do Trong Hoang
    Pournaki, Mohammad Reza
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2023, 60 (04) : 237 - 248
  • [33] Regularity of Edge Ideals
    Tran Nam Trung
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 613 - 621
  • [34] Regularity of Edge Ideals
    Tran Nam Trung
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (02) : 613 - 621
  • [35] Gorenstein binomial edge ideals
    Gonzalez-Martinez, Rene
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (10) : 1889 - 1898
  • [36] Binomial edge ideals of graphs
    Madani, Sara Saeedi
    Kiani, Dariush
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (02):
  • [37] Smoothness in Binomial Edge Ideals
    Damadi, Hamid
    Rahmati, Farhad
    MATHEMATICS, 2016, 4 (02)
  • [38] Generalized binomial edge ideals
    Rauh, Johannes
    ADVANCES IN APPLIED MATHEMATICS, 2013, 50 (03) : 409 - 414
  • [39] BINOMIAL EDGE IDEALS OF COGRAPHS
    Kahle, Thomas
    Kruesemann, Jonas
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2022, 63 (02): : 305 - 316
  • [40] Closed binomial edge ideals
    Peeva, Irena
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (803): : 1 - 33