Binomial edge ideals and bounds for their regularity

被引:0
|
作者
Arvind kumar
机构
[1] Indian Institute of Technology Madras,Department of Mathematics
来源
关键词
Binomial edge ideal; Castelnuovo–Mumford regularity; Chordal graph; Quasi-block graph; Semi-block graph; H-polynomial; 13D02; 05E40;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simple graph on n vertices and JG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_G$$\end{document} denote the corresponding binomial edge ideal in S=K[x1,…,xn,y1,…,yn].\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S = K[x_1, \ldots , x_n, y_1, \ldots , y_n].$$\end{document} We prove that the Castelnuovo–Mumford regularity of JG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_G$$\end{document} is bounded above by c(G)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(G)+1$$\end{document}, when G is a quasi-block graph or semi-block graph. We give another proof of Saeedi Madani–Kiani regularity upper bound conjecture for chordal graphs. We obtain the regularity of binomial edge ideals of Jahangir graphs. Later, we establish a sufficient condition for Hibi–Matsuda conjecture to be true.
引用
收藏
页码:729 / 742
页数:13
相关论文
共 50 条
  • [1] REGULARITY BOUNDS FOR BINOMIAL EDGE IDEALS
    Matsuda, Kazunori
    Murai, Satoshi
    JOURNAL OF COMMUTATIVE ALGEBRA, 2013, 5 (01) : 141 - 149
  • [2] Binomial edge ideals and bounds for their regularity
    Kumar, Arvind
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (03) : 729 - 742
  • [3] On the regularity of binomial edge ideals
    Ene, Viviana
    Zarojanu, Andrei
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (01) : 19 - 24
  • [4] REGULARITY OF PARITY BINOMIAL EDGE IDEALS
    Kumar, Arvind
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (07) : 2727 - 2737
  • [5] Binomial edge ideals of regularity 3
    Madani, Sara Saeedi
    Kiani, Dariush
    JOURNAL OF ALGEBRA, 2018, 515 : 157 - 172
  • [6] A proof for a conjecture on the regularity of binomial edge ideals
    Malayeri, Mohammad Rouzbahani
    Madani, Sara Saeedi
    Kiani, Dariush
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 180
  • [7] Regularity of powers of (parity) binomial edge ideals
    Shen, Yi-Huang
    Zhu, Guangjun
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 57 (01) : 75 - 100
  • [8] Regularity of binomial edge ideals of chordal graphs
    Rouzbahani Malayeri, Mohammad
    Saeedi Madani, Sara
    Kiani, Dariush
    COLLECTANEA MATHEMATICA, 2021, 72 (02) : 411 - 422
  • [9] Regularity of powers of (parity) binomial edge ideals
    Yi-Huang Shen
    Guangjun Zhu
    Journal of Algebraic Combinatorics, 2023, 57 : 75 - 100
  • [10] Bounds for the regularity of product of edge ideals
    Banerjee, Arindam
    Das, Priya
    Selvaraja, S.
    ALGEBRAIC COMBINATORICS, 2022, 5 (05): : 1015 - 1032