Stability of Nearly Integrable, Degenerate Hamiltonian Systems with Two Degrees of Freedom

被引:0
|
作者
L. Biasco
L. Chierchia
D. Treschev
机构
[1] Dipartimento di Matematica,
[2] Universita "Roma Tre,undefined
[3] " Largo S. L. Murialdo 1,undefined
[4] 00146 Roma,undefined
[5] Dept. of Mechanics and Mathematics,undefined
[6] Moscow State University,undefined
[7] Vorob'evy Gory,undefined
[8] 119899,undefined
[9] Moscow,undefined
来源
关键词
Economic Theory; Hamiltonian System; Stability Result; Action Variable; Celestial Mechanic;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of the stability of action variables in properly degenerate, nearly integrable Hamiltonian systems and prove, in particular, stability results for systems with two degrees of freedom. An application of such results to celestial mechanics is presented.
引用
收藏
页码:79 / 107
页数:28
相关论文
共 50 条
  • [31] Arnold diffusion for nearly integrable Hamiltonian systems
    Chong-Qing Cheng
    Jinxin Xue
    Science China Mathematics, 2023, 66 : 1649 - 1712
  • [32] Arnold diffusion for nearly integrable Hamiltonian systems
    Chong-Qing Cheng
    Jinxin Xue
    Science China(Mathematics), 2023, 66 (08) : 1649 - 1712
  • [33] A PROOF OF NEKHOROSHEV THEOREM FOR THE STABILITY TIMES IN NEARLY INTEGRABLE HAMILTONIAN-SYSTEMS
    BENETTIN, G
    GALGANI, L
    GIORGILLI, A
    CELESTIAL MECHANICS, 1985, 37 (01): : 1 - 25
  • [34] ALL ORDER STABILITY OF HAMILTONIAN SYSTEMS WITH 2 DEGREES OF FREEDOM
    HADJIDEMETRIOU, JD
    JOURNAL DE MECANIQUE, 1973, 12 (01): : 1 - 24
  • [35] Control of integrable Hamiltonian systems and degenerate bifurcations
    Kulp, CW
    Tracy, ER
    PHYSICAL REVIEW E, 2004, 70 (01)
  • [36] A TOPOLOGICAL INVARIANT AND A CRITERION FOR THE EQUIVALENCE OF INTEGRABLE HAMILTONIAN-SYSTEMS WITH 2 DEGREES OF FREEDOM
    FOMENKO, AT
    SISHANG, KT
    MATHEMATICS OF THE USSR-IZVESTIYA, 1990, 54 (03): : 567 - 596
  • [37] On chaotic dynamics in "pseudobilliard" Hamiltonian systems with two degrees of freedom
    Eleonsky, VM
    Korolev, VG
    Kulagin, NE
    CHAOS, 1997, 7 (04) : 710 - 730
  • [38] Topology, singularities and integrability in Hamiltonian systems with two degrees of freedom
    Bolotin, S. V.
    Kozlov, V. V.
    IZVESTIYA MATHEMATICS, 2017, 81 (04) : 671 - 687
  • [39] Two degrees of freedom quasi-bi-Hamiltonian systems
    Brouzet, R
    Caboz, R
    Rabenivo, J
    Ravoson, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (09): : 2069 - 2076
  • [40] Two degrees of freedom quasi-bi-Hamiltonian systems
    Brouzet, R.
    Caboz, R.
    Rabenivo, J.
    Ravoson, V.
    Journal of Physics A: Mathematical and General, 29 (09):