Stability of Nearly Integrable, Degenerate Hamiltonian Systems with Two Degrees of Freedom

被引:0
|
作者
L. Biasco
L. Chierchia
D. Treschev
机构
[1] Dipartimento di Matematica,
[2] Universita "Roma Tre,undefined
[3] " Largo S. L. Murialdo 1,undefined
[4] 00146 Roma,undefined
[5] Dept. of Mechanics and Mathematics,undefined
[6] Moscow State University,undefined
[7] Vorob'evy Gory,undefined
[8] 119899,undefined
[9] Moscow,undefined
来源
关键词
Economic Theory; Hamiltonian System; Stability Result; Action Variable; Celestial Mechanic;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of the stability of action variables in properly degenerate, nearly integrable Hamiltonian systems and prove, in particular, stability results for systems with two degrees of freedom. An application of such results to celestial mechanics is presented.
引用
收藏
页码:79 / 107
页数:28
相关论文
共 50 条
  • [41] Reversible maps in two-degrees of freedom Hamiltonian systems
    Zare, K
    Tanikawa, K
    CHAOS, 2002, 12 (03) : 699 - 705
  • [42] Large excursions of action within the resonance of a degenerate Hamiltonian system with two degrees of freedom
    Li, Jian
    Li, Wei-Dong
    Liu, Jie
    Sun, Yi-Sui
    PHYSICAL REVIEW E, 2009, 80 (02)
  • [43] Quantum revivals in two degrees of freedom integrable systems: The torus case
    Lablee, Olivier
    ASYMPTOTIC ANALYSIS, 2012, 77 (1-2) : 1 - 41
  • [44] Invariant tori for nearly integrable Hamiltonian systems with degeneracy
    Xu, JX
    You, JG
    Qiu, QJ
    MATHEMATISCHE ZEITSCHRIFT, 1997, 226 (03) : 375 - 387
  • [45] TOPOLOGICAL CLASSIFICATION OF INTEGRABLE HAMILTONIAN-SYSTEMS WITH 2 DEGREES OF FREEDOM - LIST OF SYSTEMS OF SMALL COMPLEXITY
    BOLSINOV, AV
    MATVEEV, SV
    FOMENKO, AT
    RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (02) : 59 - 94
  • [46] Geometry of KAM tori for nearly integrable Hamiltonian systems
    Broer, Henk
    Cushman, Richard
    Fasso, Francesco
    Takens, Floris
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 : 725 - 741
  • [47] INSTABILITY IN NEARLY INTEGRABLE HAMILTONIAN SYSTEMS: GEOMETRIC METHODS
    Seara, T. M.
    XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 282 - 282
  • [48] Invariant tori for nearly integrable Hamiltonian systems with degeneracy
    Junxiang Xu
    Jiangong You
    Qingjiu Qiu
    Mathematische Zeitschrift, 1997, 226 : 375 - 387
  • [49] THE GENERICITY OF ARNOLD DIFFUSION IN NEARLY INTEGRABLE HAMILTONIAN SYSTEMS
    Cheng, Chong-Qing
    ASIAN JOURNAL OF MATHEMATICS, 2019, 23 (03) : 401 - 438
  • [50] Twistless invariant tori in nearly integrable Hamiltonian systems
    Lochak, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (09): : 833 - 836